
Introduction to
Advanced Programming Concepts

Stefan Kluth
MPI für Physik
skluth@mpp.mpg.de

APC Introduction, C++ 2

Who are we?

● Introduce ourselves
● Why are we here?
● What do we expect?
● What is our background?
● What do we know already?

APC Introduction, C++ 3

APC topics
Principles of object oriented design

Advanced C++ concepts

Unified modeling language

Refactoring

Unit testing

Performance, design and parallelization

Julia language

APC Introduction, C++ 4

Languages

Wikipedia on Programming Language:

“A programming language is a formal constructed language
designed to communicate instructions to a machine,
particularly a computer.”

Imperative: execution instructions for explicit algorithm
(for most people this is all)

Declarative: express logic w/o fixing control flow
(Db query, regexp, configuration management,
Functional, …)

APC Introduction, C++ 5

Languages

APC Introduction, C++ 6

The right tool for the job
● Scripting

– Interpreted “line-by-line”, high-level only
– Short “throw-away” programs (mostly)
– Availability of libraries

● Compiled
– Down to machine code, many optimisations

possible
– Structure your program → functions, subroutines,

data structures, classes, packages
– Long-term projects

APC Introduction, C++ 7

In HEP
● Dominant languages

– C++
● Frameworks, DAQ, reconstruction, simulation, data

reduction, analysis
– Python

● Analysis, data handling, workflows, system services
– Unix shell (bash)

● Workflows, system services
– Julia

● Many of the above, high or low level, fast
– Fortran

● Legacy, numerically intensive
● Many more for special purposes

APC Introduction, C++ 8

In this workshop
● Concepts, methods, tools for “large” tasks

– Experiment frameworks and their components
– Analysis code

● Object oriented programming (OOP)
– Established method in large systems
– Code structuring and modularisation
– Prepare for extensions and maintenance
– Working in teams

● Enables unit tests and refactoring
● Julia

– supports and extends OOP
– multiple dispatch functions for more flexibility

APC Introduction, C++ 9

The C++ language
● Since the 80ies as C with classes

– B Stroustrup et al
– ISO standards 1998, 03, 11, 14, 17, 20, 23, ...
– OOP, generic programming (templates), system and

applications, from low to high level
● Derived from C with OO contructs

– Classes, public, private, const, inheritance,
polymorphism

– Low level efficiency with high level structures
● Best match for HEP when transition from

Fortran was needed in the 90s / noughties

APC Introduction, C++ 10

C++ highlights: classes
A C++ class is a type description, default visibility is private

class Complex {
double real;
double imaginary;

public:
 Complex(double, double);

~Complex();
 Complex& operator+(const Complex &);
 ...
};

Complex a(1,2); Complex b(3,4);
Complex c= a+b;

Define your own types matching your problem
C++ struct: class with default visibility public members

APC Introduction, C++ 11

C++ highlights: operators

Implement +, -, *, /, (), [], … for your class

#include “Result.hh”

Class MyClass {
 public:
 Result operator();
};

MyClass mc; Result res= mc();

Not directly related to OOP
More flexibility for domain-specific-languages constructed
using classes with well chosen methods and operators
Can lead to compact and powerful “C++ scripts”
Need to consider carefully expectations of users

APC Introduction, C++ 12

C++ highlights: visibility
Visibility refers to the concept of private, public, protected
data members or methods

public: free access via (pointer to) object (a la C struct)

private: no access except from within class code (data hiding)

protected: no access except private, and from subclasses

Key concept of OOP, hide
concrete data structure,
access only via methods
(interface)

[conservativememes.com]

APC Introduction, C++ 13

C++ highlights: class inheritance
Must implement “pure virtual” method signatures
Can re-implement (override) “virtual” methods
Can re-implement non-virtual methods, but w/o upcast!

class IFace {
 public:
 virtual Result doSomething(int) = 0;
 virtual Blob getBlob();
};

class MyClass : public IFace {
 public:
 virtual Result doSomething(int);
};

IFace* mc= new MyClass(); // type upcast
Result res= mc->doSomething();
Blob blob= mc->getBlob();

APC Introduction, C++ 14

C++ highlights: const
Declare class methods to not modify data members

Ensure correctness and code readability (“The code is the comment”)

Enables multiple threads (if used consistently), since data members
guaranteed to not change

class MyClass {
 Data data;
 public:
 void doSomething() const;
 void setData(const Data &);
};

const MyClass mc;
mc.doSomething();
mc.setData(Data); // error

APC Introduction, C++ 15

C++ highlights: * & etc pp
C++ does not have built-in memory management
If you are used to java or scripting …

#include “Variable.hh”
void func(const Variable& v);
...
{
Variable var; // constructed “on stack”
Variable* varp= new Variable(); // “on heap”
Variable& varr= var; // reference taken
func(var); // reference to var passed
delete varp; // remove from heap
}
// var and varr out of scope, automatic deletion

Memory management via constructor and destructor
Memory leaks, heavy tools (valgrind), ...

APC Introduction, C++ 16

C++ memory management

Old style: conventions about “object ownership”, avoid pointers(?),
leaks, valgrind, bus error, segmentation violation, !@#$%

E.g. C++11 features:

shared_ptr<Type>: manage “reference-count”, create objects,
pass around multiple copies, deleted when
not used anymore (ref-count=0)

unique_ptr<Type>: manage object “uniquely”, no ref-count,
pass around unique instance, delete
managed object when deleted

Solves most common mem.mgnt errors: no delete (mem-leak),
double delete (crash), dangling pointer access (crash)

APC Introduction, C++ 17

C++ highlights: templates
C++ templates allow “compile time polymorphism”

template<typename T> class Vector {
 T* representation;
 int size;
public:
 Vector() : representation(0) {}
 Vector(int _size) :
 representation(new T[_size]),
 size(_size) {}
 ~Vector() { delete[] representation; }
 // operator+-*/[] etc pp
};

Vector<double> vd(5);
Vd[0]= 0.0;
Vector< unique_ptr<MyClass> > vmc(10);
unique_ptr<MyClass> upmc(new MyClass());
vmc[5]= upmc;

APC Introduction, C++ 18

C++ highlights: templates

● Template compile time polymorphism ≠ OOP
● Tension between OOP and “meta-template-

programming” (MTP)
– OOP: abstraction and modularity via inheritance
– MTP: generic programming, common code around

generic type with certain properties
– After “instantiation” all types are concrete

● In an OOP project use templates with care
– e.g. templated class methods can't be virtual

APC Introduction, C++ 19

C++ highlights: final, override

More detail for class method declarations with inheritance

final: class or virtual method can't be overriden in subclasses
override: expect to override virtual method in parent class

class MyClass : public Iface {
 public:
 virtual Result doSomething(int) final;
 Blob getBlob() override;
};

Enforce design choices beyond conventions

final: helps “devirtualisation” compiler optimisation

APC Introduction, C++ 20

Refactoring

The traditional approach: edit (behavior changing!) changes in,
meanwhile code is broken, debug, debug, debug, validate
Now: control behavior with unit tests, change code in many small
steps until ready for new feature, new tests, new feature

Change the code without changing its behaviour

APC Introduction, C++ 21

xUnit tests

Test runner

Test case

Test fixture

Test suite

Test execution

Test result formatting

JUnit, PyUnit, googletest, ...

APC Introduction, C++ 22

OOP, unit tests, refactoring

Object-oriented
programming

Unit tests,
Test driven
development

Refactoring,
reengineering

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

