Phases
Disciplines |lnceptlon|| Elaboration || Construction || Tmnsitlon|

Requirements /? Roqueensat
»

Design T terten £ (L en T “ Business Modeling

—7 R . Requirements
------ -Lovel l Lwi: Taateg

Analysis & Design

Implementation
» .
? Ut Desin Low Lavet “ Ut Toteg Implementation
‘ ’ Test
Verification » . Deployment
Budd Coce
; T Configuration
& Change Mgmt
Maintenance Project Management : :
i Environment = A

0
'
A—
Elab Const || Const Const'TI'an I'n-an
| s | mab x| [mob w2 o f con [o0 || o ||

Iterations

The software development process
-. . Food for thought

et Maria Grazia Pia

T INFN Genova, ltaly

e - a5 Maria.Grazia.Pia@cern.ch
http://www.ge.infn.it/geant4/training/APC2025/

Maria Grazia Pia, INFN Genova

http://www.ge.infn.it/geant4/training/APC2025/

MigoIUN. IMFPUYSIDLE

the software development process in 72 hour

Introduce concepts and methods,
which will be discussed in following lectures

Pills of wisdom
Food for thought
Curiosity
Background for further learning

...feel free to contact us after the school!

Maria Grazia Pia, INFN Genova

Cowboy programming

Emphasis on ingenious artistry

« Galloping off on one's own without a prior plan
‘ « Brute-force programming

— * Uncertain design requirements, code rewrite
1" 'L::'”_Fa'; '.' * Quick and dirty: code and fix later

o W « Lack of comments, documentation, reviews
* Reinventing the wheel

.............

The results are often spotty
and difficult to duplicate . =

Inexperienced developers are unfamiliar with
technologies and methodologies

that support producing quality software eﬁectlvely

Software development methods and techniques are
seldom part of academic programs for physics degrees

F. P. Brooks,

“No Silver Bullet - Essence and Accidents of Software Engineering
IEEE Computer, vol. 20, no. 4, pp.10-19, April 1987

As we look to the horizon of a decade hence, we see no silver bullet. There is no
single development, in either technology or in management technique, that by itself
promises even one order-of-magnitude improvement in productivity, in reliability, in
simplicity.

Not only are there no silver bullets now in view, the very nature of software makes
it unlikely that there will be any - no inventions that will do for software
productivity, reliability, and simplicity what electronics, transistors, and large-scale
integration did for computer hardware. We cannot expect ever to see twofold
gains every two years.

Although we see no startling breakthroughs - and indeed, I believe such to be
inconsistent with the nature of software - many encouraging innovations are under
way. A disciplined, consistent effort to develop, propagate, and exploit these
innovations should indeed yield an order-of-magnitude improvement. There 1s no
royal road, but there 1s a road.

Maria Grazia Pia, INFN Genova

Does it help?

Publications

People

2003-2013

B Geant4 collaboration ™ Qur team

Average productivity

B Geant4 collaboration ®QOur team

B Geant4 collaboration ™ QOur team

Maria Grazia Pia, INFN Genova

Much more than just hacking code...

Implementation

Test

Life-cycle

early stage, elaboration, construction, use in production...

~ctvives J_ Workiows [N Products

Maria Grazia Pia, INFN Genova

Define the functionality

of the software and Software
constraints on its operation design and
Software implementation
specification Produce software that

meets the specification
Ensure that the software

does whatonewants [N a nUtShe"

Software
e . Software
verification and)
.] evolution
validation

Deal with change

These complex activities include other sub-activities
e.g. requirements validation, architectural design, unit testing etc.

All of the above generate products
e.g. code, documentation, design diagrams, test results etc.

and involve responsibilities in various roles
Maria Grazia Pia, INFN Genova

Software development methodologies

schedule
(delivery date)

What we want

functionality quality
(features) (defects)

Software development methodologies
are conceptual frameworks to structure, plan, and control
the process of developing software

Usually built on best practices derived from experience on the field

Highly prescriptive Adaptable to the context
- Wide variety ‘
Small projects Large scale projects
Maria Grazia Pia, INFN Genova 8

Old, risky... and most common

Requirements /]

Waterfall

Cascade of phases:

Design

the output of one is input to the next

Difficult to
accommodate change

Risk of discovering

Verification
problems at a late stage of 7

the project

_3 Emphasis on planning

Implementation

Maintenance

Best-suited to solving well-understood problems

Maria Grazia Pia, INFN Genova

“For most projects, the first system built is
barely usable: too slow, too big, too hard to use,
or all three.

Plan to throw one away; you will, anyhow.”

Fred Brooks, The Mythical Man-Month, Addison-Wesley, 1975-1995

Maria Grazia Pia, INFN Genova

Variants of waterfall development

Concept of Acceptance
Operations Test
System _
sttem EmphaSIS on
Requirements .
testing
Requirements at all levels of
software

development

The software development proceeds once the details have been defined
both on the functional side and on the verification side

Maria Grazia Pia, INFN Genova "

Spiral development

Non-linear view of the software life cycle

A

Set objectives— |

Risk
analysis

Opera-
tional
protoype

Risk

REVIEW analysis -
. T T
Requirements plan Simulations, models, benchmarks -
Life-cycle plan Concept of
Operation S/
fequirements / Product)]
design Detailed
Development Requirement design
plan validation Eade
i Unit test
Integration Design = m
and test plan vayv Integration

Planning

Acceptance sl

s=nie 2 -Develop and test

\
[——__Assess and mitigate risks

Emphasizes
risk management

|dentify risks

Assign priorities to risks
Develop a series of prototypes
for the identified risks

Use a waterfall model for each
development loop

loop in the spiral = phase of software development

Barry W. Boehm, A Spiral Model of Software Development and Enhancement, IEEE Computer, vol. 21 no. 5, pp. 62-72, 1988

Maria Grazia Pia, INFN Genova

12

Unified Process (upr, usppr, RUP)

6 core process Dynamic perspective

workflows
l Disciplines
Business Modeling
Requirements

Analysis & Design

Implementation
Test
Deployment

Configuration
& Change Mgmt
Project Management
Environment

Q
Iz
ied

(&)

Q

Q.

(7))

|

Q

Q.

(&)
I;

®
ied
(7))

3 supporting
workflows

lterative, incremental process

Phases
Elaboration Construction

Inception Transition

_'hh

t

Tran
#1

Tran
#2

Const

Initial #N

Elab #2|| Const " Const
#1 #2

Iterations

Maria Grazia Pia, INFN Genova

Emphasis on

modeling

Designed along
with UML

Apparently
complex, but
highly
customizable

13

Best practices

Develop software
iteratively

Manage requirements

Use component-based
architectures

Visually model software

Verify software quality

Control changes to

software

Maria Grazia Pia, INFN Genova

High priority features developed first

Document requirements
Keep track of changes to requirements
Analyze the impact of changes

Structure the system into components

UML.: static and dynamic views

Testing (and more)

Change management system
Configuration management
procedures and tools

14

The agile manifeStO Kent Beck et al. (2001)

“We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right,
we value the items on the left more.”

Emphasis on

@ Effective communication among all stakeholders
@ Adaptive response to change
@ Rapid, incremental delivery of software

B. Boehm, “Get Ready for Agile Methods, With Care”, IEEE Computer, 2002, http:/dx.doi.org/10.1109/2.976920

A thoughtful critique of agile methods, their strengths and weaknesses, written by a very experienced software engineer
B. Meyer, Agile!: The Good, the Hype and the Ugly, Springer, 2014

http://dx.doi.org/10.1109/2.976920

Extreme Programming (XP)

Pushes recognized good practices to the extreme

Software Engineering Practice XP Principles

Code reviews are good Review code all the time
Testing is good Everybody tests all the time
Design is good Part of daily business

Enough design to meet

Simplicity is good requirements and no more

Simple shared story of how

Architecture is important the system works

Integration testing is important | Continuously integrate and test

Short iterations are good Make iterations really short

Highly prescriptive, but often organizations adopting XP pick and choose

Emphasis on quick, incremental, test-first development

K. Beck, Extreme Programming explained, Addison-Wesley, 2000 16

Test-driven development (TDD)

a0 L
cs ‘53“\:\6\ . ie 5"\“
c
‘oﬁ\a‘f o me“‘ Write a test that fails
a“ o (before writing the code

' implementing new functionality)

Write code that

Improve the design makes the test pass

of the existing code

ol

REFACTOR

Facilitates regression testing
Discover problems early during the software development

Limited to unit testing,
still need system testing, performance, reliability testing etc.

Suitable to small-size projects

17
D. Astels, Test Driven Development: A Practical Guide, Prentice Hall, 2003

Scru I Project management for agile (incremental) development

Short, daily meetings to
review progress, reprioritize

Daily
Stand-up

Starting point
for planning

: Sprint
relVI.eYV’ 2-4 weeks
prioritize fixed length
Product Backlog Sprint Backlog Iteration Potentially shippable

product increment

whole team is

Who/what defines
empowered

the product backlog?

arranges daily meetings

tracks the backlog of work to be done

records decisions

measures progress against the backlog
communicates with customers and management

Scrum master
IS a facilitator

K. Schwaber, and M. Beedle, Agile Software Development with Scrum, Prentice Hall, 2001
K. Schwaber, Agile Project Management with Scrum, Microsoft Press, 2004

Clean code Programming hygiene

“Even bad code can function. But if code isn't clean, it can bring a
development organization to its knees. Every year, countless hours
and significant resources are lost because of poorly written code.

But it doesn't have to be that way.” AHEIkef?gnfsocqmehp

@ Meaningful names @ Classes ——

- Classes, functions etc. - Small!
o Comments - Encapsulation

- Do not make up for bad code... - C.oheswn o

~ Good/bad - Single Responsibility

] Principle

@ Functions _ P _ —

- Small! @ Unit testing The Clean Coder

- Do one thing - Clean

- No side effects - Single concept per test

- .Arguments: zero, few o Smells
@ Objects -

- Heuristics

- Expose behavior, hide data - More in Refactoring

Maria Grazia Pia, INFN Genova

Can we improve the way we develop software? How?

Improvement requires measurement: before/after

Software Capability Maturity Model ISO/IEC 15504
CMM, CMMI Focus on process Standard fOI'
Measure improvement process
/ assessment
Level4 Processes measured
r>Quantimtwely Managed and controlled
Change J Processes characterized for the |SO/|EC 330xx

K Level3 | organization and is proactive.
Defin ed (Projects tailor their processes from
organization's standards,
Analyze I . ’

; Level 2 Processes characterized for projects
Managed and is often reactive.

| Set of key practices
Processes unpredictable, . .
poorly controlled and reactive associated with each level

Helpful guidance towards adopting good practices

even without formal assessments

Maria Grazia Pia, INFN Genova 20

For singles

Emphasis is usually on software development
teams

What if | work at a project where | am
the only software developer?

‘DRat‘l @ﬂ&L,A

-zine tar the rational community '\;\\::

\%

Features Technical Franklin's Kite Rational Develop

> A Software Development Process for a Team of One

by Philippe Kruchten
Rational Fellow

Maria Grazia Pia, INFN Genova

Introduction
to the
Personal
Software
Process

WATTS S. HUMPHREY

|r\p

IS AN SOFTWARE |

A Self-Improvement Process
for Software Engineers

Watts S. Humphrey

One size does not fit all

@ A software process model is a simplified representation
of a software process
- From a particular perspective

@ Many different approaches are possible
- Positive and negative sides in any of them

@ Good or bad often depends on the context
- Small/large scale project, short/long lifetime etc.
@ Process frameworks may (should) be adapted and extended

A good software process is tailored to the project

We are both
the developers and
the customers!

Peculiarities of the

scientific environment

Maria Grazia Pia, INFN Genova

Tz UntreD Sorrware Further learning
DEVELOPMENT

PROCESS

e | (TR
N -

Tiko Eprriox I’HmIpln I’MIT(III\ and l’mdlu\

‘ FRITH '
i le("Sll'

The complese guide
te the Unified
Process from 1h4

r;mu EDTION

Robert C. Martin
¥ butions by James W, Newkirk 20 Robert S. Koss

-~

Clean Code Clean Architecture

A Craftsman’s Guide to
A Handix ¢ Agde Software Cat "w Software Structure and Design

Robert C. Marti
aing

Maria Grazia Pia, INFN Genova 23

