
Maria Grazia Pia, INFN Genova

Maria Grazia Pia
INFN Genova, Italy

Maria.Grazia.Pia@cern.ch
http://www.ge.infn.it/geant4/training/APC2025/

Overview of concepts
Food for thought

Suggestions for further learning
Topics for discussion

Software Testing
in ½ hour

http://www.ge.infn.it/geant4/training/APC2016/

Maria Grazia Pia, INFN Genova

Why testing software?

To show that it does
what it is intended to

do

To discover defects
before it is put into use

“Program testing can be used to show the presence of bugs,
but never to show their absence!”

E. W. Dijkstra et al., Structured programming, 1972

Testing cannot demonstrate
that the software is free of defects

or that it will behave as specified in every circumstance

2

Maria Grazia Pia, INFN Genova

Therac 25

3

Safety analysis of the system excluded software

N. Leveson, C. S. Turner, An Investigation of the Therac-25 Accidents,
IEEE Computer, vol. 26, no. 7, pp. 18-41, 1993.

Radiation therapy machine

6 massive overdose cases,
1985-1987

A commission concluded that the primary reason should be attributed to
bad software design and development practices,
and not explicitly to several coding errors that were found

The software was designed so that
it was realistically impossible to test it in a clean automated way

Caused by
poor software engineering practices

Maria Grazia Pia, INFN Genova

The Panama accidents

4

§ IAEA, Investigation of an Accidental Exposure of Radiotherapy Patients in Panama: Report of a Team of Experts, 2001
§ C. Borras et al., Clinical effects in a cohort of cancer patients overexposed during external beam pelvic radiotherapy, Int. J.

Radiation Oncology Biol. Phys., vol.59, pp. 538-550, 2004
§ C. Borras et al., Overexposure of radiation therapy patients in Panama: problem recognition and follow-up measures,

Rev. Panam. Salud Publica, vol.20, n.2-3, pp. 173-187, 2006

A modified protocol was used
without verification and validation

28 radiation therapy patients were overexposed in 2000-2001
23 of them had died by September 2005
18 of the deaths were from radiation effects

The software permitted incorrect
forms of data entry, which in turn led
to miscalculation of treatment time
Therapy planning software from

Multidata delivered different doses
depending on the order in which

data were entered

Maria Grazia Pia, INFN Genova

Ariane 5 maiden flight

5

The primary cause was found to be a piece of software
retained from the previous launcher systems,

 which was not required during the flight of Ariane 5.
The software contained implicit assumptions

about the parameters, which were
safe for Ariane 4, but not for Ariane 5.

Credit: ESA4 June 1996

~40 seconds after initiation
of the flight sequence,
the launcher veered off

its flight path,
broke up and exploded

Maria Grazia Pia, INFN Genova

Space Shuttle Columbia accident, 2003
§ The Space Shuttle Columbia wing failed during re-entry

due to hot gases entering a portion of the wing damaged
by a piece of foam that broke off during launch

§ Shortly after launch, Boeing did an analysis using
the code CRATER to evaluate the likelihood that
the wing was seriously damaged

§ Analysis indicated that there might be some damage,
but probably not at a level to warrant concern

§ The prior CRATER validation results indicated that
the code gave conservative predictions

— NASA Columbia Shuttle Accident Report

Columbia re-entry

§ CRATER was designed to study the
effects of micrometeorite impacts

§ had been validated only for projectiles
less that 1/400 the size and mass of
the piece of foam that struck the wing

Flaws
in the
analysis

The analysis did not use LS-DYNA – the industry standard for assessing impact damage

Columbia breakup

Maria Grazia Pia, INFN Genova

V&V

7

Testing is part of
Software Verification and Validation

IEEE Standard for System and
Software Verification and Validation

Sponsored by the
Software & Systems Engineering Standards Committee (C/S2ESC)

IEEE
3 Park Avenue
New York, NY 10016-5997
USA

25 May 2012

IEEE Computer Society

IEEE Std 1012™-2012
(Revision of

IEEE Std 1012-2004)

Authorized licensed use limited to: CERN. Downloaded on October 20,2013 at 15:17:22 UTC from IEEE Xplore. Restrictions apply.

Verification
The process of providing objective
evidence that the software and its
associated products conform to
requirements.

Validation
The process of providing evidence that
the software and its associated
products solve the right problem (e.g.,
correctly model physical laws and use the
proper system assumptions), and satisfy
intended use and user needs.

Are we building the product right?

Are we building the right product?

Maria Grazia Pia, INFN Genova
8

How do you trust the software you use?

Maria Grazia Pia, INFN Genova

Multiple perspectives

9

Levels of testing
• Unit
• Integration
• System
• Acceptance

Functional/non-functional testing

Black/white-box testing

Performance testing

Stress testing

Security testing

Configuration testing

Test harness

Test cases

Test coverage Test automation

Test planning Test frameworks

Regression testing

…etc.

Static testing

No time to cover all topics!

Maria Grazia Pia, INFN Genova

Testing strategies

10

input
output

Only considers software
behaviour
Based on
functional specifications

Knowledge of the
source code is used
to design defect tests
Systematic approach
Focus on program coverage

Good practice: a combination of both strategies

Maria Grazia Pia, INFN Genova

Epistemology

G4HadronElastic
G4double dd = 10.;
G4Pow* g4pow = G4Pow::GetInstance();
if (A <= 62) {
bb = 14.5*g4pow->Z23(A);
aa = g4pow->powZ(A, 1.63)/bb;
cc = 1.4*g4pow->Z13(A)/dd;
} else {
bb = 60.*g4pow->Z13(A);
aa = g4pow->powZ(A, 1.33)/bb;
cc = 0.4*g4pow->powZ(A, 0.4)/dd;
}

G4ChipsAntiBaryonElasticXS
lastPAR[43]=920.+03*a8*a3;
lastPAR[44]=93.+.0023*a12;

G4UrbanMscModel
coeffc1 = 2.3785 - Z13*(4.1981e-1 - Z13*6.3100e-2);

G4GoudsmitSaundersonMscModel
if(i>=19)ws=cos(sqrtA);

G4EmCorrections
if(15 >= iz) {
if(3 > j) { tet = 0.25*Z2*(1.0 + 5*Z2*alpha2/16.); }
else { tet = 0.25*Z2*(1.0 + Z2*alpha2/16.); }
}

How to test such code?
Calibrated?

…more about “magic numbers” in Refactoring

11

Maria Grazia Pia, INFN Genova

Test cases
Require domain knowledge
‒ Guidance from use cases, user stories, scenarios…
‒ Requirements, specifications and designs provide

guidance at a higher level of abstraction and generality

Require source code knowledge
‒ Code-based control
‒ Logic and sequence defects
‒ Initialization and data flow defects

12

Software testing requires studying both the
problem domain and the source code in depth

Maria Grazia Pia, INFN Genova

Levels of testing

13

Testing individual pieces of
the system as they are

created

Unit
testing

Integration
 testing

System
 testing

Acceptance
testing

Testing sets of interoperating or
communicating units or components

Testing the entire system

Demonstrate that the product is
ready for release

Usually performed by users

Maria Grazia Pia, INFN Genova

Regression testing

14

A regression is a feature (function, attribute)
that used to work and no longer does

It is usually related
to some change

1. A change or bug fix creates a new bug
2. A change or bug fix reveals an existing bug
3. A change or bug fix in one area breaks something in another area

Risk mitigation strategies

Run all tests requires automation

Run part of the tests
• traceability
• change analysis
• quality risk analysis

based on

The bigger picture Change management
in the software life-cycle

Maria Grazia Pia, INFN Genova

Not only running code…

Analyze and check:
§ Requirements
§ Design models
§ Source code
§ Proposed tests
§ …

15

Inspections and reviews

Pair programming can be seen as a static testing method
(continuous code review)

Static
testing

Pill of advice: train yourself to do peer reviews!

Can spot defects that
would not be seen

through running tests

Maria Grazia Pia, INFN Genova
16

helps staying focusedTest process
Workflow in the RUP

T
e
s
t

c
y
c
l
e

Each iteration
can contain
multiple
test cycles

§ Test Plan
§ Test Ideas
§ Test Cases
§ Tests
§ Test Suites
§ Test Evaluation Summary
§ Defect and Defect List
§ Workload Model

Focus on concepts
rather than on formalities

or paperwork!

Maria Grazia Pia, INFN Genova
17

Test process
Roles

and activities
in the RUP

A person can play multiple roles

Guidance
rather than
prescription

Maria Grazia Pia, INFN Genova

How good is my testing process?

18

http://tmmi.org/

Inspiration and guidance for improvement

http://tmmi.org/

Maria Grazia Pia, INFN Genova

Unit testing

Issues are found at an early stage
Can be resolved minimizing the impact on other parts
of the code
Helps in changing and maintaining the code
Facilitates regression testing

19

Unit = smallest testable part
Procedural Programming: a function
Object Oriented Programming: a class

Unit testing contributes to risk mitigation:

Maria Grazia Pia, INFN Genova

Good characteristics of unit tests
Automated and repeatable
‒ Unit test frameworks

Once a test is written, it should remain for future use
‒ Unit tests should be documented
‒ Planning and infrastructure for running

Anyone should be able to run existing unit tests
‒ Domain knowledge required to design a test
‒ Not to execute it: self-explaining result

20

Maria Grazia Pia, INFN Genova

Pyramid and ice-cream testing

21

unit

integration

system

system
integration

unit

manual testing

co
st

 of
 de

ve
lop

me
nt

an
d m

ain
ten

an
ce

volume of test development volume of test development

best practice

Maria Grazia Pia, INFN Genova

Unit test frameworks
Tools enabling programmers
§ to describe every test as a simple script
§ to specify the test configuration, the input and an

assertion describing the expected pass/fail criteria (oracle)

§ to run a set of tests as an automated process

§ Pioneers: xUnit family
- JUnit, CppUnit…

§ Modern tools
- Boost Test Library, Google Test, catch, cgreen...

22

Maria Grazia Pia, INFN Genova

Google unit test framework
AKA Google Test, googletest, gtest

Unit testing framework for C++ code
Follows xUnit concept
Open source

Assertion Check whether a condition is true
Success, non-fatal failure, fatal failure

Tests Use assertions

Test suite Contains one or more tests

Test fixture
A class for common objects and
functionality shared by multiple tests

Test program Can contain multiple test suites

23

former
“test case”

Maria Grazia Pia, INFN Genova

Example: unit test for a square root function

Creates a hierarchy named SquareRootTest
PositiveNos is a test

execution continues even if there is a failure

aborts if there is a failure

initializes the framework
automatically detects and runs all the tests
defined using the TEST macro

24

Maria Grazia Pia, INFN Genova

A test fixture class

25

derived from the ::testing::test class in gtest.h

Use with the TEST_F
macro instead of TEST

Maria Grazia Pia, INFN Genova

Caveat

26

Be aware of what you are testing!

“Passed the test” does not necessarily mean
that the code is exempt from flaws

“Testing shows the presence, not the absence of bugs”

Geant4 10.2, testing
a model of electron

interactions: the test
verifies that electrons

penetrate a layer of
silicon and deposit

energy in it.
Secondary photons

are produced OK

Consistent with
experiment, one
expects a fraction
of electrons to be
backscattered

Reliability Engineering and System Safety 91 (2006) 1331–1357

Calibration, validation, and sensitivity analysis: What’s what

T.G. Trucanoa,!, L.P. Swilera, T. Igusab, W.L. Oberkampfc, M. Pilchc

aOptimization and Uncertainty Estimation Department, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0819, USA
bJohns Hopkins University, Baltimore, MD 21218, USA

cValidation and Uncertainty Estimation Processes, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0819, USA

Available online 19 January 2006

Abstract

One very simple interpretation of calibration is to adjust a set of parameters associated with a computational science and engineering
code so that the model agreement is maximized with respect to a set of experimental data. One very simple interpretation of validation is
to quantify our belief in the predictive capability of a computational code through comparison with a set of experimental data.
Uncertainty in both the data and the code are important and must be mathematically understood to correctly perform both calibration
and validation. Sensitivity analysis, being an important methodology in uncertainty analysis, is thus important to both calibration and
validation. In this paper, we intend to clarify the language just used and express some opinions on the associated issues. We will endeavor
to identify some technical challenges that must be resolved for successful validation of a predictive modeling capability. One of these
challenges is a formal description of a ‘‘model discrepancy’’ term. Another challenge revolves around the general adaptation of abstract
learning theory as a formalism that potentially encompasses both calibration and validation in the face of model uncertainty.
r 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Our primary goal for this paper is to explore and
differentiate the principles of calibration and validation for
computational science and engineering (CS&E), as well as
to present some related technical issues that are important
and of current interest to us. Our conclusion is that
calibration and validation are essentially different. To
explain what we mean by calibration and validation, we
restrict our attention to CS&E software systems, called
codes here. We then define the product (output) of the
execution of a code for a given choice of input to be the
resulting calculation. Now, one definition of calibration is
to adjust a set of code input parameters associated with one
or more calculations so that the resulting agreement of the
code calculations with a chosen and fixed set of experi-
mental data is maximized (this requires a quantitative

specification of the agreement). Compare this with the
following simple definition of validation: that is, to quantify
our confidence in the predictive capability of a code for a
given application through comparison of calculations with
a set of experimental data.
The foundation of our discussion below elaborates the

meaning of these definitions of validation and calibration,
primarily through the introduction of some mathematical
formalism. Our formalism allows us to reasonably precisely
argue that CS&E validation and calibration require rigorous
comparison with benchmarks, which we precisely define in
Section 2. Our discussion leads us to consider other concepts
as well, including uncertainty, prediction, and verification, and
their relationship to validation and calibration. Verification
is a particularly important concept in CS&E and inevitably
influences calibration and validation. We will explain why
this is the case, and claim as well that validation and
calibration in CS&E both depend on results of verification.
We also claim that calibration is logically dependent on the
results of validation, which is one way of emphasizing that
calibration cannot be viewed as an adequate substitute for
validation in many CS&E applications.

ARTICLE IN PRESS

www.elsevier.com/locate/ress

0951-8320/$ - see front matter r 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ress.2005.11.031

!Corresponding author.
E-mail addresses: tgtruca@sandia.gov (T.G. Trucano),

lpswile@sandia.gov (L.P. Swiler), tigusa@jhu.edu (T. Igusa),
wloberk@sandia.gov (W.L. Oberkampf), mpilch@sandia.gov (M. Pilch).

Discern
verification, validation

and calibration

Maria Grazia Pia, INFN Genova

Make software testable!
Detector design, experimental strategies, physics results
depend critically on software
…which is often untested (partially tested) because it is untestable
‒ or became untestable in the course of its evolution

27

• Improving software design
(refactoring)

• Breaking dependencies
(techniques à la Feathers)

• Embedding testability
in the software design

Making
software
testable

Testability must be maintained
‒ through the evolution of the whole software system

Testability involves epistemological issues
‒ domain knowledge and implementation details

Maria Grazia Pia, INFN Genova

Most of these problems can be easily solved if we simply
write tests as we develop our code
‒…and we maintain the tests
‒…and we regularly execute them
‒…and we investigate the reasons for failure

If a test is hard to write, that means that we have
to find a different design which is testable
It is always possible
Software design reviews: care about testability

Discipline of software engineering

28

Maria Grazia Pia, INFN Genova

Hands-on exercise
Refactoring is intertwined with unit testing

In the refactoring exercise get acquainted with:
‒ Associating software development and change

with unit testing
‒ A unit test framework: GoogleTest
‒ Test automation
‒ Regression testing

Apply what you learn at the APC school to
your own software development environment!

29

