Software Testing
in 2 hour

CANT YOU DO
ANYTHING RIGHT?

Overview of concepts
Food for thought
Suggestions for further learning
Topics for discussion

Maria Grazia Pia

INFN Genova, Italy
Maria.Grazia.Pia@cern.ch

http://www.ge.infn.it/geant4/training/APC2025/

Maria Grazia Pia, INFN Genova


http://www.ge.infn.it/geant4/training/APC2016/

Why testing software?

To show that it does To discover defects
what it is intended to before it is put into use

Testing cannot demonstrate
that the software is free of defects
or that it will behave as specified in every circumstance

“Program testing can be used to show the presence of bugs,

but never to show their absence!”
E. W. Dijkstra et al., Structured programming, 1972

Maria Grazia Pia, INFN Genova



Therac 25

Radiation therapy machine
6 massive overdose cases,
1985-1987

Caused by
poor software engineering practices mimenczs iy

ent table

A commission concluded that the primary reason should be attributed to

bad software design and development practices,
and not explicitly to several coding errors that were found

The software was designed so that
it was realistically impossible to test it in a clean automated way

Safety analysis of the system excluded software

N. Leveson, C. S. Turner, An Investigation of the Therac-25 Accidents,
' IEEE Computer, vol. 26, no. 7, pp. 18-41, 1993.



The Panama accidents

@ 28 radiation therapy patients were overexposed in 2000-2001
@ 23 of them had died by September 2005
@ 18 of the deaths were from radiation effects

A modified protocol was used

without verification and validation

The software permitted incorrect
forms of data entry, which in turn led
" (Onenfedpstent to miscalculation of treatment time

—_ =
& O
1 1 )

_ -
o N
1 1

() _Additt'ici)nal paltpi:nts . -
e Therapy planning software from
Multidata delivered different doses

_._M depending on the order in which

-5 (IJ 5 10 15 20 256 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100105 data Were entered

Dose error (%)

(==
1

Number of patients

o N & o
| I

= |AEA, Investigation of an Accidental Exposure of Radiotherapy Patients in Panama: Report of a Team of Experts, 2001

= C. Borras et al., Clinical effects in a cohort of cancer patients overexposed during external beam pelvic radiotherapy, Int. J.
Radiation Oncology Biol. Phys., vol.59, pp. 538-550, 2004

= C. Borras et al., Overexposure of radiation therapy patients in Panama: problem recognition and follow-up measures,
Rev. Panam. Salud Publica, vol.20, n.2-3, pp. 173-187, 2006



Ariane 5 maiden flight

~40 seconds after initiation
of the flight sequence,
the launcher veered off
its flight path,
4 June 1996 Crd £ broke up and exploded

The primary cause was found to be a piece of software
retained from the previous launcher systems,
which was not required during the flight of Ariane 5.

The software contained implicit assumptions
about the parameters, which were
safe for Ariane 4, but not for Ariane 5.

Maria Grazia Pia, INFN Genova



Space Shuttle Columbia accident, 2003

= The Space Shuttle Columbia wing failed during re-entry
due to hot gases entering a portion of the wing damaged
by a piece of foam that broke off during launch

= Shortly after launch, Boeing did an analysis using
the code CRATER to evaluate the likelihood that
the wing was seriously damaged

= Analysis indicated that there might be some damage,
but probably not at a level to warrant concern

= The prior CRATER validation results indicated that
the code gave conservative predictions

Columbia breakup

CRATER was designed to study the
effects of micrometeorite impacts

had been validated only for projectiles
analysis less that 1/400 the size and mass of

R the piece of foam that struck the wing

The analysis did not use LS-DYNA — the industry standard for assessing impact damage

Maria Grazia Pia, INEN Genova — NASA Columbia Shuttle Accident Report



V &V Testing is part of

Software Verification and Validation

Verification

The process of providing objective

evidence that the software and its
associated products conform to

reqUirements. IEEE Standard for System and

Software Verification and Validation

Are we building the product right?

Validation

The process of providing evidence that
the software and its associated

p rOd u CtS s o Ive th e ri g ht p ro b I e m (e. g. ; gg?t\r::aor;eg gzstt}:ns Engineering Standards Committee (C/S2ESC)
correctly model physical laws and use the

proper system assumptions), and satisfy
intended use and user needs.

Are we building the right product?

Maria Grazia Pia, INFN Genova !

IEEE Computer Society

ark Avenue IEEE Std 101 2"‘72.01 2
New York, NY 10016-5997 (Revision of
SA IEEE Std 1012-2004)




How do you trust the software you use?

“I'm just doing what the other ones are doing"

Maria Grazia Pia, INFN Genova



Multiple perspectives

Levels of testing Regression testing
Unit
Integration :
System Performance testing
« Acceptance

Stress testing

Static testing

Functional/non-functional testing Configuration testing

No time to cover all topics!

Black/white-box testing Security testing

Test coverage Test harness

Test automation

Test cases Test planning

Test frameworks

Maria Grazia Pia, INFN Genova

..etc.

9




Testing strategies

input

—

@ Knowledge of the @ Only considers software
source code is used behaviour
to design defect tests @ Based on

@ Systematic approach functional specifications

® Focus on program coverage

Good practice: a combination of both strategies

Maria Grazia Pia, INFN Genova 10



Epistemology "ot s

..more about “magic numbers” in Refactoring

G4HadronElastic
G4double dd = 10:;

??’: 2‘2’ 6%”{30\,\/ = G4Pow::Getlnstance(); G4ChipsAntiBaryonElasticXS
bb = 14.5*g4pow->Z23(A); lastPAR([43]=920.+03"a8"a3;

aa = g4pow->powZ(A, 1.63)/bb; lastPAR[44]=93.+.0023 a12;

cc = 1.4*g4pow->Z13(A)/dd;

} else { G4GoudsmitSaundersonMscModel
bb = 60.*g4pow->Z13(A); if(i>=19)ws=cos(sqrtA);

aa = g4pow->powZ(A, 1. 33)/bb

;30 0.4%g4pow->powZ(A, 0./ G4EmCorrect|ons
if(15 >=iz) {

if(3 > ) { tet = 0.25*22*(1.0 + 5*Z2*alpha2/16.); }
else {tet=0.25"22*(1.0 + Z2*alpha2/16.); }

Y
G4UrbanMscModel

coeffc1 = 2.3785 - Z13%(4.1981e-1 - Z13*6.3100e-2); 1




Test cases

@ Require domain knowledge

- Guidance from use cases, user stories, scenarios...

- Requirements, specifications and designs provide
guidance at a higher level of abstraction and generality

@ Require source code knowledge
- Code-based control
- Logic and sequence defects

- Initialization and data flow defects

Software testing requires studying both the
problem domain and the source code in depth

Maria Grazia Pia, INFN Genova 12



Levels of testing

Unit Testing individual pieces of
testing the system as they are
created
Integration Testing sets of interoperating or
testing communicating units or components

System
testing

Testing the entire system

Demonstrate that the product is
ready for release

Acceptance
testing Usually performed by users

13
Maria Grazia Pia, INFN Genova



Regression testing

A regression is a feature (function, attribute) It is usually related
that used to work and no longer does to some change

1. A change or bug fix creates a new bug
2. Achange or bug fix reveals an existing bug
3. Achange or bug fix in one area breaks something in another area

Risk mitigation strategies

Run all tests <= requires automation
« traceability
SULRNERTORGEREECHN Pased on «  change analysis

« quality risk analysis
4 )
The bigger picture N Change management

in the software life-cycle
- /

Maria Grazia Pia, INFN Genova 14




Not only running code...

Inspections and reviews testing

Analyze and check:
= Requirements

= Design models
= Source code

= Proposed tests

Can spot defects that
would not be seen
through running tests

Pair programming can be seen as a static testing method
(continuous code review)

Pill of advice: train yourself to do peer reviews!

Maria Grazia Pia, INFN Genova 15



Test process

Detfine Evduation

Workflow in the RUP M*Tion

Vv

-

= Test Plan —
= Test Ideas Ve“‘”“j"*"”°a°“
= Test Cases &

[Another

= Tests Technique)
= Test Suites

= Test Evaluation Summary

= Defect and Defect List

= \Workload Model

Focus on concepts

rather than on formalities
or paperwork!

Maria Grazia Pia, INFN Genova

'

Validate Build Qability

Improve Test Assets

<> [Another

I
¥ Test Cycle)

<

-~ 0 O =

C
y
C
I
e

v__helps staying focused

Each iteration
can contain
multiple

test cycles

16



Test process

Q

L]

TestManager

Roles
and activities
in the RUP

Q

L]

TestAnalyst

O
L]

Test Designer

Guidance

rather than
prescription

®
[]

Tester

Maria Grazia Pia, INFN Genova

=

A person can play multiple roles

»

Agree on > Obtaiq
the Mision Tes tability
Identify Test Commitment
Motivators

=

Identdy Targets
of Test

=

Define Test
Approach

=

Ddino Test

g

Assess and Improve
Test Effort

Assess and

Advocate Qualty

)

> D etermine
Detaik _> Test Results
Identify Test Define Assessment
Ideas and Traceability needs

)

D efine

—

|dentify
Testability

Mechans ms

Test Environment
Configurations

D,

Implement
Test

D

Define
Testability
Elements

[ )

Stiucture the Test
Implementation

> D D
7

Implement Execute Analyze

Test Suite Test Suite TestF ailure



How good is my testing process?

TMMi Maturity Levels

| N N N D,

% % " %

L5 - Optimization

B v v v
Test Policy and Test Test Organization Test Measurement Defect Prevention
Strategy

@ v - .
Test Planning Test Training Program :;:ﬁj:ﬁ;uallty Quality Control

v v N P
Test Monitoring and Test Lifer cle and Advanced Peer Reviews Test Process Optimization
Control Integration

B B
Test Dgsign and Non-Functional Testing
Execution

: ' http://tmmi.org/
Test Environment Peer Reviews

Inspiration and guidance for improvement

Maria Grazia Pia, INFN Genova 18


http://tmmi.org/

Unit testing

R CDONTALIAYS
Unit = smallest testable part TEST MY CODE,

Procedural Programming: a function BUTWHEN I DO -

. . o [DOITIN
Object Oriented Programming: a class PRODUCTION 99

Unit testing contributes to risk mitigation:

@ Issues are found at an early stage

@ Can be resolved minimizing the impact on other parts
of the code

@ Helps in changing and maintaining the code
@ Facilitates regression testing

19

Maria Grazia Pia, INFN Genova



Good characteristics of unit tests

@ Automated and repeatable
- Unit test frameworks

@ Once a test is written, it should remain for future use
- Unit tests should be documented

- Planning and infrastructure for running

@ Anyone should be able to run existing unit tests
- Domain knowledge required to design a test
- Not to execute it: self-explaining result

Maria Grazia Pia, INFN Genova 20



Pyramid and ice-cream testing

best practice

A

Integration

manual testing

system

Integration

cost of development and maintenance

volume of test development = volume of test development>

Maria Grazia Pia, INFN Genova 21



Unit test frameworks

Tools enabling programmers

to describe every test as a simple script

to specify the test configuration, the input and an
assertion describing the expected pass/fail criteria (oracle)

to run a set of tests as an automated process

Pioneers: xUnit family
- JUnit, CppUnit...

Modern tools
- Boost Test Library, Google Test, catch, cgreen...

Maria Grazia Pia, INFN Genova 22



Google unit test framework
AKA Google Test, googletest, gtest

@ Unit testing framework for C++ code
@ Follows xUnit concept
@ Open source

Check whether a condition is true

Assertion Success, non-fatal failure, fatal failure

Tests Use assertions

Test suite Contains one or more tests

- eI ele[ =10 Can contain multiple test suites

: A class for common objects and
LR DCTER functionality shared by multiple tests

23

Maria Grazia Pia, INFN Genova



Example: unit test for a square root function

double square-root (const double);

#include "gtest/gtest.h"
Creates a hierarchy named SquareRootTest

TEST(SquareRootTest, PositiveNos) { <G POsitiveNOS is
EXPECT_EQ (18.0, square-root (324.0));
EXPECT_EQ (25.4, square-root (645.16));
EXPECT_EQ (50.3321, square-root (2533.310224));

}  execution continues even if there is a failure

TEST (SquareRootTest, ZeroAndNegativeNos) {
ASSERT_EQ (0.0, square-root (0.0));
ASSERT_EQ (-1, square-root (-22.0));

}  aborts if there is a failure

int main(int argc, char **argv) { -
::testing::InitGoogleTest (&argc, argv); Initializes the fra

}

 a lest

mework

return RUN_ALL_TESTS() ; automatically detects and runs all the tests

defined using the TEST macro

Maria Grazia Pia, INFN Genova

24



Use with the TEST _F

A teSt fiXtu e CIaSS macro instead of TEST

class myTestFixturel: public ::testing::test {

public: derived from the ::testing::test class in gtest.h
myTestFixturel( ) {
// initialization code here

}

void SetUp( )
// code here will execute just before the test ensues

}

void TearDown( ) {
// code here will be called just after the test completes
// ok to through exceptions from here if need be

}

~myTestFixturel( ) {
// cleanup any pending stuff, but no exceptions allowed

}

// put in any custom data members that you need

}s

Maria Grazia Pia, INFN Genova



Caveat Be aware of what you are testing!

‘Passed the test” does not necessarily mean
that the code is exempt from flaws

“Testing shows the presence, not the absence of bugs”

Geant4 10.2, testing
a model of electron
interactions: the test
verifies that electrons
penetrate a layer of
silicon and deposit
energy in it.
Secondary photons
are produced

Discern
verification, validation
and calibration

Maria Grazia Pia, INFN Genova

Consistent with

experiment, one
expects a fraction
f electrons to be
ackscattered

Available online at .sciencedirect. e ——
vailable online at www.sciencedirect.com RELIABILITY

SCIENCE DIRECT® ENGINEERING
@ E
onsllas SYSTEM
g SAFETY
ELSEVIER Reliability Engineering and System Safety 91 (2006) 13311357

www.elsevier.com/locate/ress

Calibration, validation, and sensitivity analysis: What’s what

T.G. Trucano™*, L.P. Swiler®, T. Igusa®, W.L. Oberkampf®, M. Pilch®

“Optimization and Uncertainty Estimation Dep Vational L
°Joh X sity, Baltimore, MD 21218, USA
india ional Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0819, USA

es, P.O. Box 5800, Albuquerque, NM 87185-0819, USA

“Validation and Uncertainty Estimation Processe




Make software testable!

@ Detector design, experimental strategies, physics results
depend critically on software

@ ...which is often untested (partially tested) because it is untestable
- or became untestable in the course of its evolution

« Improving software design

Making (refactoring)
software ‘ « Breaking dependencies
(techniques a la Feathers)
testable

« Embedding testability
in the software design

@ Testability must be maintained
- through the evolution of the whole software system

@ Testability involves epistemological issues

- domain knowledge and implementation details

Maria Grazia Pia, INFN Genova 27



Discipline of software engineering

@ Most of these problems can be easily solved if we simply
write tests as we develop our code

- ...and we maintain the tests
- ...and we regularly execute them
- ...and we investigate the reasons for failure

{ If a test is hard to write, that means that we have J

to find a different design which is testable

@ It is always possible
@ Software design reviews: care about testability

Maria Grazia Pia, INFN Genova 28



Hands-on exercise

@ Refactoring is intertwined with unit testing

@ In the refactoring exercise get acquainted with:

- Associating software development and change
with unit testing

- A unit test framework: GoogleTest
- Test automation
- Regression testing

Apply what you learn at the APC school to

your own software development environment!

Maria Grazia Pia, INFN Genova 29



