
Design Patterns in
OOP

Following the “gang of four” (GoF)
Gamma, Helm, Johnson, Vlissides, Design Patterns,
Addison-Wesley 1995

Design Patterns in OOP 2

Why Design Patterns?
● Apply well known and proven solutions

● many problems are not new → no need to invent
wheels

● code structure easier to understand → easier
maintenance

● great help for beginners to learn good practice
● patterns are not static, guide to individual solutions

● Analogies
● song styles, theater pieces, novels, (architecture),

engineering, ...

Design Patterns in OOP 3

History

C. Alexander (1936-2022), computer scientist
and architect

Critical of traditional modern architecture,
patterns as solution guides in architecture, incremental building,
interaction with users, empower laypeople to create designs

Medieval cities built according to rules, not rigid masterplans

Design Patterns in OOP 4

Pattern Classification

Creational Structural Behavioral

Class Factory Method* Adapter* Interpreter
Template Method*

Object Abstract Factory* Adapter* Chain of Responsibility*
Builder Bridge Command
Prototype* Composite* Iterator*
Singleton* Decorator* Mediator*

Facade Memento(*)
Flyweight Observer*
Proxy* State*

Strategy*
Visitor

Not all patterns covered* here, many more exist

Design Patterns in OOP 5

Patterns and OOP

● Design patterns help to translate OOP design
principles
● dependency management
● components
● code reuse
● ease of planned (and unplanned) changes
● maintenance
● code quality

Design Patterns in OOP 6

Structured pattern description
● Pattern name

● one- or two-word descriptive title
● Intent

● what happens? Why? Design issue or problem?
● Motivation

● example pattern application scenario
● Applicability

● when to use? What problems solved?
● Structure

● UML graphical description

Design Patterns in OOP 7

Structured pattern description

● Participants and Collaborations
● classes, objects, their roles and collaborations

● Consequences and Implementation
● results and trade-offs, implementation tricks

● Examples
● code, projects

● Related patterns
● relation to other patterns, combined uses

Design Patterns in OOP 8

Creational Patterns
● Organise object creation
● Class creational patterns

● Factory Method
● defer (part of) object creation to subclasses

● Object creational patterns
● Abstract Factory
● Singleton
● defer (part of) object creation to other objects

Design Patterns in OOP 9

(Abstract) Factory Method
Create objects without dependence on concrete classes

Isolate concrete classes from higher levels, createClass() is Factory
Method, AbsFactory is
Abstract Factory

Easy to replace
functionalities

Hard to change class
structure

GUIs on different platforms, plug-ins

Alternative: Prototype

Design Patterns in OOP 10

Prototype
Create new objects from a prototype through an interface to
avoid dependency on concrete classes

Isolate concrete classes from higher level

Avoid hierarchy
of factories

Easy to get instances from DLLs

Classes must support cloning, must decide shallow or deep copy,
take care of initialisation

Alternative: (Abstract) Factory method

Design Patterns in OOP 11

Singleton
Guarantee that there is only one instance of a class

Avoid confusion over central
objects

Private constructors, static
method to return handle to
single static instance

Can be subclassed (vs. static members),
control number of instances by extending
getInstance

Used in more complex patterns

Design Patterns in OOP 12

Structural Patterns
● Compose complex structures from small ones
● Class structural patterns

● Compose interfaces or implementations using class
inheritance

● Adapter
● Object structural patterns

● Compose objects to get new functionality, possibly
at run-time

● Adapter, Composite, Decorator, Proxy

Design Patterns in OOP 13

Adapter
Convert (adapt) the interface of a class to interface expected by
clients

Use existing class (libraries)

Class adapter: mult. inheritance,
implement request using
AdaptedClass methods

Object adapter: hold reference,
forward or translate requests

Decorator, Proxy (no interface
changes)

Design Patterns in OOP 14

Composite
Compose object recursively into tree-like structures

Represent whole-part relationships,
handle objects and groups of objects
uniformly

Composite can contain simple
objects (Leaf) or composites

Clients can compose complex
objects, but don't see difference to
simple objects, easy to add new component
types

Decorator, CoR, Iterator, Visitor can collaborate

Design Patterns in OOP 15

Decorator

Add functionality dynamically to an object

Alternative to direct (static) subclassing,
fight “combinatorics”

Decorator forwards requests
to component

GUI toolkits, ...

Adapter also changes interface, “degenerate
composite”, Strategy modifies behaviour

Design Patterns in OOP 16

Proxy
Provide placeholder for another object to control access

Support “lazy” operations (object creation,
IO) and/or caching, smart references,
“copy-on-write”

Client sees only ProxyClass
objects, requests forwarded
to ConcreteClass objects

Helps handling “expensive” objects

Proxy provides access control, Decorator or Adapter modify
behavior or interface

Design Patterns in OOP 17

Behavioral Patterns
● Implement algorithms
● Class behavioral patterns

● use inheritance to separate algorithm invariants
from algorithm variants

● Template Method
● Object behavioral patterns

● use object composition to distribute algorithm parts
(invariants, variants)

● Chain of Responsibility, Iterator, State, Observer,
Strategy

Design Patterns in OOP 18

Template Method
Define invariant algorithm skeleton and defer
variant steps to methods in subclasses

Algorithm family implementation,
localise common behavior of classes

Dependency inversion from concrete to
abstract → class libraries

Factory Methods providing objects with
algorithm steps often used in Template
Method, Strategy gives algorithm
variants at object level

Design Patterns in OOP 19

Chain of Responsibility (CoR)
Allow several objects to handle a request by chaining them
and passing the request along the chain, objects handle the request
or pass it to the next object

In a dynamic system find correct
object for a request

No direct connection between sender
and receiver of request, can change
request handling at run-time by
reconfiguring the chain

Handle user events, collaboration with Composite where
parent is next object, flexible procedures

Design Patterns in OOP 20

Chain of Responsibility

Object interaction
diagram

Design Patterns in OOP 21

Iterator
Access elements of a collection without exposing collection structure

Handle different collection structures, support heterogeneous
collections, multiple
traversals, different
iteration algorithms

Container and Iterator
tightly coupled, C++ with
templates or interface+
RTTI for elements

Iterator over Composite structures, Factory Method to create
Iterators

Design Patterns in OOP 22

State
Allow object behavior change following state change

State machine modeling, refactoring of conditionals in methods
depending on state

Localise state depending
behavior into objects,
explicit state changes, state
objects are stateless

States can be Singletons

Design Patterns in OOP 23

State
Object interaction diagram

Design Patterns in OOP 24

Observer
Define one-to-many relation between objects to notify clients
when target changes state

“Broadcast” messages
avoiding tight coupling
of objects

Updates to observers can
be unexpected

Complex relation between observed and observer objects can be
collected into a “ChangeManager” object

GUI objects observe drawable objects for redrawing

Design Patterns in OOP 25

Observer
Object interaction diagram

Design Patterns in OOP 26

Mediator
Enclose object interactions in a central “controller” object

Complex but well defined communication between objects,
use when objects have links
to many other objects

Worker notifies Director with
its address, Director identifies
and decides next step

Decouple Workers, centralise
control, can change protocol
by subclassing Director

Director could be Observer of Workers

Design Patterns in OOP 27

Mediator
Object interaction diagram

Design Patterns in OOP 28

Strategy
Define a family of algorithms interchangeable for clients

Make objects configurable for different behaviours,
implement algorithm variants independent of invariants,
hide details from clients
via Strategy class, remove
conditionals from Algorithm,
different implementations
of same behaviour

Track finding algorithm (pattern recognition, candidate
selection, track fit)

Design Patterns in OOP 29

Summary and Discussion
● Creational

● (Abstract) Factory Method vs Prototype
● Only one object: Singleton

● Structural
● Decorator: add behaviour
● Composite: recursive object structures
● Proxy: access control to other objects

Design Patterns in OOP 30

Summary and Discussion

● Behavioral
● Template and Strategy: algorithm (in-) variants
● State: state-dependent behavior
● Iterator: access to complex object collections
● CoR: communication to varying number of objects
● Observer vs Mediator: object communication

(de-)centralised

Design Patterns in OOP 31

Some HEP Patterns

● HEP offline programs have some special
patterns

● Particular requirements
● high throughput
● variable algorithms
● long lifetime of codes
● programming interface for users

Design Patterns in OOP 32

Transient/Persistent (Memento)

Decouple objects from the details of the storage system without
violating data hiding

Storage systems subject to changes,
keep other system parts invariant

Can replace storage system,
Persistent and TPConverter

Memento w/o Converter

Use together with abstract IO streams and
Blackboard

Design Patterns in OOP 33

Blackboard
Model traditional HEP data processing with objects

EventStore is “COMMON BLOCK”
to hold event data, processing
Module gets Transient objects
and puts new Transient objects

AbsInput and AbsOutput
decouple the IO system
from the data processing

C++ use template classes for typesafe access

ATLAS “StoreGate”, BaBar “event”

Design Patterns in OOP 34

Procedure
Setup for configurable procedures for event data processing

Establish framework for
Flexible data processing
procedures with stable
IO structure

Often combined with script
language (tcl, python) to perform configuration

ATLAS athena (Gaudi), BaBar offline sw, …

Mediator without callback to Director

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

