
3 OO Class Design Principles

3.1 Dependency Management
3.2 The Copy Program
3.3 Class Design Principles

OO Class Design Principles 2

3.1 Dependency Management

● The parts of a project depend on each other
– components, programs, groups of classes, libraries

● Dependencies limit
– flexibility

– ease of maintenance

– reuse of components or parts

● Dependency management tries to control
dependencies

OO Class Design Principles 3

3.1 Dependency Management

● Software systems are the most complex
artificial systems

● There will be a lot of dependencies
● Software development was and is always

concerned with dependencies
● OOP: better tools to manage dependencies

– trace dependencies e.g. in UML models
– use OOP to manipulate dependencies

OO Class Design Principles 4

3.1 Problems with Software

Rigid

Fragile

Not Reuseable

High Viscosity

Useless Complexity

Repetition

Opacity

These statements apply to an
average physicist/programmer
who develops and/or maintains
some software system.

Software gurus will always find
some solution in their code.
Do you want to rely on the guru?
What if that person retires, finds
a well-paid job or gets moved to
another project?

OO Class Design Principles 5

3.1 Rigid Software

● Difficulties with changes
– Unforeseen side-effects occur frequently

– Hard to estimate time to complete modifications

● “Roach Motel”
– Always in need of more effort

● Management reluctant to allow changes
– Official rigidity “don't touch a working system”

– Users forced to develop workarounds

OO Class Design Principles 6

3.1 Fragile Software

● Small changes have large side effects
– New bugs appear regularily

– In the limit of P(bug|change) = 1 system is
impossible to maintain

● It looks like control has been lost
– Users become critical

– Program looses credibility

– Developers loose credibility

OO Class Design Principles 7

3.1 Not Reuseable

● You have a problem and find some piece of
code which might solve it
– but it brings in a lot of other stuff
– it needs changes here and there

● Eventually you have two choices
– Take over maintenance of the branched code
– Roll your own

● You would like to include headers and link a
library maintained by somebody else

OO Class Design Principles 8

3.1 High Viscosity

● Viscosity of the design
– Hard to make changes properly, i.e. without

breaking the design → make hacks instead

● Viscosity of the environment
– Slow and inefficient development environment

– Large incentive to keep changes localised even if
they break designs

– Design changes are very difficult

OO Class Design Principles 9

3.1 Useless Complexity

● Design/code contains useless elements
● Often for anticipated changes or extension

– May pay off
– Meanwhile makes design/code harder to

understand
● Or leftovers of previous design changes?

– Time for a clean-up
● Tradeoff between complexity now and

anticipated changes later

OO Class Design Principles 10

3.1 Repetition

● Added functionality using cut&paste
– Then slight modifications for local purpose

● Find same structure repeatedly
– More code

– Harder to debug and modify

● There is an abstraction somewhere
– Refactor into function/method

– Create class(es) to do the job

OO Class Design Principles 11

3.1 Opacity

● Design/code difficult to understand
– We have all suffered …
– What is clear now may seem strange later

● Ok when its your code
– You suffer in silence

● Not acceptable in collaboration
– Need to code clearly, may need to rearrange
– Code reviews, git merge request workflow, etc

OO Class Design Principles 12

3.1 Dependencies Managed

● Code is less rigid

● Code is less fragile

● Reuse is possible

● Viscosity is low

OO Class Design Principles 13

3.1 Less Rigid Code

● Modules can be interchanged

● Changes are confined to a few modules

● Cost of changes can be estimated

● Changes can be planned and scheduled

● Management is possible

OO Class Design Principles 14

3.1 Less Fragile Code

● Confined changes: P(bug|change) 1≪
● New bugs will most likely appear where the

changes was made, i.e. localised
– Easier to fix (hopefully)

● Risk of changes can be estimated

● Credibility of code and developers conserved

OO Class Design Principles 15

3.1 Reuseable Code

● A module can be used in a different context
without changes
– Just use headers and link a library

● No need to compile and/or link lots of unrelated
stuff

OO Class Design Principles 16

3.1 Low Viscosity

● Design is easy to modify
– No quick hacks needed

– Proper design improvements will actually happen

● Large scale changes affecting many modules
are possible
– Reasonable compile and link times for the whole

system

– May depend on adequate hardware as well

OO Class Design Principles 17

3.1 Compile and Link Times

● Compile and link times are unproductive
● In a project with N modules compile and link

time can grow like N2 (assuming every module
is tested) when dependencies are not
controlled

● Loss of productivity
● Long turnaround times → slow progress
● Dependency management essential in large

projects

OO Class Design Principles 18

3.1 Code Changes

● Modules/packages and makefiles
– Verify that makefiles are still reliable

● Changes to libraries (reuseable code)
– All affected users must relink (and retest)

● Shared libraries
– Need to distribute (and restart programs)

– Validation by users still needed

– Need recompile after interface changes

OO Class Design Principles 19

3.2 The Copy Routine

● Code rots

● There are many reasons for code rot

● We'll make a case study (R. Martin)

● A routine which reads the keyboard and writes
to a printer

OO Class Design Principles 20

3.2 Copy Version 1

A simple solution
to a simple problem

ReadKeyboard and
WritePrinter are probably
reuseable

OO Class Design Principles 21

3.2 Copy Version 2

Many users want to read
files too ...

But they don't want to
change their code ... can't
put a flag in the call

Ok, so we use a global flag

It is backwards compatible,
to read files you have to
set the flag first

OO Class Design Principles 22

3.2 Copy Version 3

bool GFile;

void Copy(void) {
 char ch;
 while(1) {
 if(GFile) { ch= ReadFile(); }
 else { ch= ReadKeyboard(); }
 if(ch == EOF) break;
 WritePrinter(ch);
 }
}

Oh dear, we introduced a bug
in version 2 (printing EOF isn't
nice)

Version 3 fixes this bug

OO Class Design Principles 23

3.2 Copy Version 4
Users want to write to
files, of course they want
it backwards compatible

We know how to do that!

The Copy routine seems to
grow in size and complexity
every time a feature is
added

The protocol to use it
becomes more complicated

OO Class Design Principles 24

3.2 Copy done properly in C

Finally a good C
programmer comes to
the rescue!

But this is C?!

FILE, fgetc and fputc behave like
an interface class

FILE represents a generic byte
stream manipulated by fgetc,
fputc etc.

OO Class Design Principles 25

3.2 Copy in C++

More complicated
but easy to add new
features

OO Class Design Principles 26

3.2 Copy Routine Summary

● Lack of sensible design leads to code rot
– Useless complexity, repetition, opacity

● Software systems are dynamic
– New requirements, new hardware

● A good design makes the system flexible and
allows easy extensions
– Abstractions and interfaces

● An OO design may be more complex but it builds
in the ability to make changes

OO Class Design Principles 27

3.2 Dependency Management
Summary

● Controlling dependencies has several
advantages for software system
– Not rigid, not fragile, reuseable, low viscosity

● Also affects development environment
– Lower compile and link times, less testing

– More productive work

● Plan for changes and maintenance

	title
	Slide 2
	Slide 3
	dmprob
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	cpv1
	cpv2
	cpv3
	cpv4
	cpc
	cpcpp
	Slide 26
	Slide 27

