
3.3 Class Design Principles

● Single Responsibility Principle (SRP)

● Open/Closed Principle (OCP)

● Liskov Substitution Principle (LSP)
– a.k.a. Design by Contract

● Dependency Inversion Principle (DIP)

● Interface Segregation Principle (ISP)

OO Class Design Principles 2

3.3 Single Responsibility Principle
(SRP)

A class should have only one reason to change
Robert Martin

Related to and derived from cohesion, i.e. that elements
in a module should be closely related in their function

Responsibility of a class to perform a certain function
is also a reason for the class to change

OO Class Design Principles 3

3.3 SRP Example

All-in-one wonder Separated responsibilities

Always changes to 4vector Changes to rotations or boosts
don't impact on 4vector

OO Class Design Principles 4

3.3 SRP Summary

● Class should have only one reason to change
– Cohesion of its functions/responsibilities

● Several responsibilities
– mean several reasons for changes → more

frequent changes
● Sounds simple enough

– Not so easy in real life
– Tradeoffs with complexity, repetition, opacity

OO Class Design Principles 5

3.3 Open/Closed Principle (OCP)

Modules should be open for extension,
but closed for modification

Bertrand Meyer

Object Oriented Software Construction

Module: Class, Package, Function

New functionality → new code, existing code remains unchanged

“Abstraction is the key” → cast algorithms in abstract interfaces
develop concrete implementations
as needed

OO Class Design Principles 6

3.3 Abstraction and OCP

Client is closed to changes
of Server

Client is open for extension
through new Server
implementations

Without AbsServer the
Client is open to changes
in Server

OO Class Design Principles 7

3.3 The Shape Example -
Procedural

Shape.h
enum ShapeType { isCircle, isSquare };
typedef struct Shape {
 enum ShapeType type
} shape;

Circle.h
typedef struct Circle {
 enum ShapeType type;
 double radius;
 Point center;
} circle;
void drawCircle(circle*);

Square.h
typedef struct Square {
 enum ShapeType type;
 double side;
 Point topleft;
} square;
void drawSquare(square*);

drawShapes.c
#include "Shape.h"
#include "Circle.h"
#include "Square.h"

void drawShapes(shape* list[],
 int n) {
 int i;
 for(int i=0; i<n; i++) {
 shape* s= list[i];
 switch(s->type) {
 case isSquare:
 drawSquare((square*)s);
 break;
 case isCircle:
 drawCircle((circle*)s);
 break;
 }
 }
}

RTTI a la C: Adding a new shape requires many changes

OO Class Design Principles 8

3.3 Problems with Procedural
Implementation

● drawShapes is not closed
– switch/case probably needed in several places

– Adding a shape → modify switch/case

– There may be many and the logic may be more
complicated

– Extending enum ShapeType → rebuild everything

● Rigid, fragile, highly viscous

OO Class Design Principles 9

3.3 The Shape Example OO

DrawShapes is closed against changes
from adding new shapes
It is open for extension, e.g. adding new
functions to manipulate shapes

Just add new shapes or functions and relink

OO Class Design Principles 10

3.3 OCP Summary

● Open for extension
– Add new code for new functionality, don't modify

existing working code
– Implementations of interfaces somewhere

● Closed for modification
– Need to anticipate likely modifications to be able to plan

ahead in the design
– e.g. ordering shapes? No closure against this

requirement ... but could be added in a design-
preserving way (low viscosity)

OO Class Design Principles 11

3.3 OCP How-To

● How is the system going to evolve?
● How will its environment change?
● Isolate against kinds of changes, e.g.

– database schema (data model)
– hardware changes (sensors, ADCs, TDCs, etc)
– data store technology (e.g. Objectivity vs ROOT)

● Plan ahead, but don't implement what is not
already needed

OO Class Design Principles 12

3.3 Liskov Substitution Principle
(LSP)

All derived classes must be substituteable
for their base class

Barbara Liskov, 1988

The “Design-by-Contract” formulation:

All derived classes must honor the contracts
of their base classes

Bertrand Meyer

OO Class Design Principles 13

3.3 The Square-Rectangle Problem

Clients (users) of Rectangle expect
that setting height leaves width
unchanged (and vice versa)

Square does not fulfill this expectation
Client algorithms can get confused

Hack: attempt to identify subclasses
and use if/switch (RTTI)

This is evil!

OO Class Design Principles 14

3.3 Contract Violation

● The contract of Rectangle
– height and width independent; set one while the

other is unchanged, area = height*width
● Square breaks this contract
● Derived methods should not expect more and

provide no less than the base class methods
– Preconditions are not stronger
– Postconditions are not weaker

OO Class Design Principles 15

3.3 The FourVector Example

A 4-vector IS-A 3-vector with a time-component? Not in OOP,
4-vector has different algebra → can't fulfill 3-vector contracts

This can crash when v
is a FourVector

OO Class Design Principles 16

3.3 LSP Summary

● Subclass must fully substitute base class
– Guides design and choice of abstractions

● Good abstractions are not always intuitive
● Violating LSP may break OCP

– Need RTTI and if/switch lost closure
● Inheritance/polymorphism powerful tools

– Use with care

● IS-A relation really means behaviour

OO Class Design Principles 17

3.3 Dependency Inversion
Principle (DIP)

Details should depend on abstractions.
Abstractions should not depend on details.

Robert Martin

Why dependency inversion? In OOP we have ways to
invert the direction of dependencies, i.e. class inheritance
and object polymorphism

OO Class Design Principles 18

3.3 DIP Example

Dependency changed
from concrete to
abstract ...

... at the price of dependency
here, but is on an abstraction.

Somewhere a dependency on
concrete Server must exist,
but we get to choose where.

The abstract class
is unlikey to change

OO Class Design Principles 19

3.3 DIP and Procedural Design

The BaBar Framework classes
depend on interfaces

Can e.g. change data store
technology without disturbing
the Framework classes

Procedural:

Call more concrete routines
Dependence on (reuseable)
concrete modules

In reality the dependencies are
cyclic → need multipass link and
a “dummy library”

OO Class Design Principles 20

3.3 DIP Summary

● Use DI to avoid
– deriving from concrete classes
– associating to or aggregating concrete classes
– dependency on concrete components

● Encapsulate invariants: generic algorithms
– Abstract interfaces don't change
– Concrete classes implement interfaces
– Concrete classes easy to replace

● Foundation classes (STL, CLHEP, MFC)?

OO Class Design Principles 21

3.3 Interface Segregation Principle
(ISP)

Many client specific interfaces are better
than one general purpose interface.

Clients should not be forced to depend
upon interfaces they don't use.

1) High level modules should not depend on low level modules.
Both should depend upon abstractions (interfaces)

2) Abstractions should not depend upon details.
Details should depend on abstractions.

Robert Martin

OO Class Design Principles 22

3.3 ISP Explained

● Multipurpose classes
– Methods fall in different groups
– Not all users use all methods

● Can lead to unwanted dependencies
– Clients using one aspect of a class also depend

indirectly on the dependencies of the other aspects
● ISP helps to solve the problem

– Use several client-specific interfaces

OO Class Design Principles 23

3.3 ISP Example: Timed Door

There may be derived classes of Door which don't need the
TimerClient interface. They suffer from depending on it
anyway.

OO Class Design Principles 24

3.3 Timed Door ISP

RevolvingDoor does not depend needlessly on TimerClient
SwingDoor and SlidingDoor really are timed doors

OO Class Design Principles 25

3.3 ISP Example: UIs

The Server “collects” interfaces
New UI → Server interface changes
All other UIs recompile

UIs are isolated from each other
Can add a UI with changes in
Server → other UIs not affected

OO Class Design Principles 26

3.3 ISP Summary

● Class (Server) collects interfaces for various
purposes (Clients) → fat interface
– Use separate interfaces to hide parts of the Server

interface for Clients
– Similar to data hiding
– Or split the Server in several parts

● Be careful with vertical multiple inheritance
– You might drag in dependencies you don't

want/need/like

OO Class Design Principles 27

3.3 Class Design Principles:
● Single Responsibility Principle (SRP)

– Only one reason to change
● Open-Closed Principle (OCP)

– Extend functionality with new code
● Liskov Substitution Principle (LSP)

– Derived classes fully substitute their bases
● Dependency Inversion Principle (DIP)

– Depend on abstractions, not details
● Interface Segregation Principle (ISP)

– Split interfaces to control dependencies

	Slide 1
	srp1
	srp2
	Slide 4
	ocp
	ocpabs
	shape
	Slide 8
	shapeoo
	Slide 10
	Slide 11
	lsp
	lspsq
	Slide 14
	4vec
	Slide 16
	dip
	dipexam
	diproc
	Slide 20
	isp
	Slide 22
	timedoor
	tdisp
	ispui
	Slide 26
	Slide 27

