4 OO Package Design Principles

4.1 Packages Introduction

4.2 Packages in UML

4.3 Three Package Design Principles

4.4 Development Environment (Three more principles)
4.5 Summary

4.1 Packages Introduction

 What Is a package?
- Classes are not sufficient to group code

- Some classes collaborate » dependencies
- Some don't know each other

* Grouping related classes together seems
natural

- But how?
- Dependencies between packages

00 Pac?»}?}%%]%){(fls]lf%n Principles

4.1 Package

* A package iIs a group of classes

* Classes in a package are often compiled
together into a library

— but unit of compilation is mostly individual class
* A package is a unit for testing

* A package can be a releasable component
- a CVS/SVN/qgit/nhg/... module

00 Pa&}{ﬁg% Ir)ﬁls]lf%n Principles

4.2 Packages in UML

A package

Analysis | «—
A dependency between packages

I

I

| /

I

l A package with classes

PhyVectors Y shown inside

FourVector &—| LorentzBoost | [«—

I

ThreeVector & Rotation

00 Pa&}{ﬁg% Il)ﬁﬁlf’%n Principles 4

GUI

4.2 Realisation

GUIDriver

«interface»
AbsUI

1

1

|
V

/

«interface»

GUIServer

«interface»

TouchpadServer

«interface»

ConsoleServer

ServerStuff

GUI depends on AbsUI

Associations exist between classes
In GUI and AbsUI

AbsUI is an abstract package

ServerStuff realises AbsUI,

JAN / It is a concrete package

UlServer

00 Pac?»}?}%%]%){(fls]lf%\n Principles

An inheritance relationship exists
between classes in AbsUI and
ServerStuff

4.3 Three Package Design
Principles

* Reuse-Release Equivalency Principle
 Common Closure Principle
 Common Reuse Principle

00 Pa&h&gg Ir)ﬁls]lf%n Principles

4.3 Reuse-Release Equivalency
Principle (REP)

The unit of reuse Is the unit of release
Bob Martin

It is about reusing software.

Reuseable software is external software,

you use it but somebody else maintains it.
There 1s no difference between commercial

and non-commercial external software for reuse.

00 Pa&h&gg]%){?]s]lf%n Principles

4.3 Reuse-Release Equivalency

* Expectations on external software

- Documentation

e complete, accurate, up-to-date
- Maintainance

* bugs will be fixed, enhancements will be considered
- Reliability

* N0 major bugs

* no sudden changes

 can stay with proven versions (for a while)

00 Pa&l_{pe}gg]%){(?]s]lf%n Principles

4.3 Release Control

* Requirements for reuseable software

- Put reuseable components into a package

- Track versions of the package

— Assign release numbers to stable releases
— Stable releases need release notes

— Allow users to use older releases for a while

e The unit of reuse Is the unit of release

00 Pac?»}?}%%]%){(fls]lf%n Principles

4.3 REP Summary

* Group components (classes) for reusers
* Single classes are usually not reuseable

— Collaborating classes make up a package

* Classes in a package should form a
reuseable and releaseable module

— Module provides coherent functionality
- Dependencies on other packages controlled
- Requirements on other packages specified

e Reduces work for the reuser

00 Pac?»}?}%%]%){?ls]lﬁ‘\n Principles

10

4.3 Common Closure Principle
(CCP)

Classes which change together belong together
Bob Martin

Minimise the impact of change for the programmer.
When a change is needed, it is good for the programmer

If the change affects as few packages as possible, because
of compile and link time and revalidation

00 Pacq‘}{ﬁg%]%){(fls]lf%]n Principles

11

4.3 From OCP to CCP

* OCP: Classes should be open for extension,
but closed for modification

- This Is an ideal
- Classes designed for likely kinds of changes

* Cohesion of closure for packages

- Classes in a package should be closed to the
same kinds of changes

— Changes will be confined within few packages
* Reduces frequency of release of packages

00 Pacq‘}{ﬁ%%]%){(fls]lf%\n Principles

12

4.3

CCP Summary

* Group classes with similar closure together

- package closed for anticipated changes
* Confines changes to a few packages

* Reduces pac

e Reduces wor

00 Pa&}{ﬁg% Il)ﬁﬁlf’%\n Principles

Kage release frequency

K for the programmer

13

4.3 Commom Reuse Principle
(CRP)

Classes in packages should be reused together
Bob Martin

Packages should be focused, users should
use all classes from a package

CRP for packages is analogous to SRP for classes

0]0] Pa&}(ﬁg%]%){(fls]lf%n Principles 14

4.3 Common Reuse

* A package brings in all its dependencies

* User only interested in a few classes

- the user code still depends on all dependencies
of the package

- the user code must be recompiled/relinked and
retested after a new release of the package,
even If the actually used classes didn't change

* CRP helps to avoid this situation

0]0] Pacq‘}{ﬁg%]%){?ls]lﬁ‘]n Principles 15

4.3 CRP Summary

* Group classes according to common reuse
— avold unneccessary dependencies for users

* Following the CRP often leads to splitting
packages

- Get more, smaller and more focused packages
* CRP analogous to SRP for classes

e Reduces work for the reuser

00 Pa&h&gg II)ﬁ]S]lf’%n Principles

16

4.3 The Triad Triangle

REP: Group Unneeded CCP: Group for
for reusers releases maintainer

—

Package ‘

Little reuser
convenience

Changes in
many package

CRP: Split to get
common reuse

00 Pacq‘}?}g%]%){(?]s]lf%n Principles

17

4.4 The Development
Environment

* Controlling relations between packages

- Critical for large projects
- Programming, compile and link time

* Three more package design principles
— Acyclic Dependencies

- Stable Dependencies
- Stable Abstractions

* Other aspects of development environment

00 Pac?»}?}%%]%){(fls]lf%\n Principles

18

4.4 The Acyclic Dependencies
Principle (ACP)

The dependency structure for packages must be
a Directed Acyclic Graph (DAG)

Stabilise and release a project in pieces
Avolid interfering developers - Morning after syndrome
Organise package dependencies in a top-down hierarchy

0]0] Pacq‘}(ﬁg%]%){(fls]lf%n Principles 19

4.4 Morning-After-Syndrome
* Not the one after an extended pub crawl

* You work on a package and eventually it
works - you go home happy

* The next day your package Is broken!

- A package you depend upon changed
- Somebody stayed later or came in earlier

* When this happens frequently

— Developers interfere with each other
- Hard to stabilise and release

00 Pac?»}?}%%]%){?ls]lﬁ‘\n Principles

20

4.4 Dependencies

UserAnalysis

are a DAG

It may look complicated,
but it is a DAG (Directed
Acyclic Graph)

Can exchange

I I j— —1— — - 0bjyIO

! . [1 I

! LA VS R el I
| Framework p = | - —

! | o ! _v
! i by |

N - —— - - - ——|—>I>AbSIO

ObjylO and RootlO

I
I
- \
o]
{_r_
< le
D —
0.
(D
|_I
<1—-—

Y

I
I V
CLHEP ‘ Objectivity/DB

ROOT

00 Pa&}{ﬁg% Ir)ﬁls]lf%n Principles

21

4.4 Dependency Cycles

UserAnalysis
|
S — i
' : A cycle between Framework
Beta | _ _ _ __ ; 1 and ObjylO
; I ObjyIO/L
| ' : - | Must develop together
I Framework ¥ T = - + - _ _
| P | May need multipass link
| 1| I
- —I - - =1 I | |
11 * Y V .
| I == 4DataModel |
B !
I I
j_u(¥
CLHEP Objectivity/DB

0]0] Pa& age D(?su%\n Principles 22
11t

4.4 ADP Summary

* Dependency structure of packages is a DAG

* Dependency cycles » Morning-After-
Syndrome

* Dependency hierarchy should be shallow

* Break cycles with
— Abstract interfaces (DIP)
- Splitting packages (CRP)
- Reorganising packages

0]0] Pa&h&g% II)ﬁ]S]lf’%n Principles 23

4.4 Stable Dependencies Principle
(SDP)

Dependencies should point In
the direction of stability

Robert Martin

Stability: corresponds to effort required to change a package
stable package - hard to change within the project
Stability can be quantified

0]0] Pa&}(ﬁg%]%){(fls]lf%n Principles 24

4.4 Quantifying Stability

C = # classes outside the package

which depend on classes
iInside the package
(incoming dependencies)

C = # classes outside the package

A Is a stable package,

T many other packages
= ' — depend on it
A I<_ _:_ _Jdc — Responsible

| |=0

|

|

- - =|D

A Is unstable, it
depends on many

other packages

=1

—
e
T

A ---*I-->[C — lIrresponsible
N -
- >{p

00 Pg&}.{ﬁg% Ir)ﬁﬁlf’%\n Principles

which classes inside the
package depend upon
(outgoing dependencies)

C

e |[nstability

I= Ca"' Ce |-Metric

25

4.4 SDP Example
Good

Bad

- 4B

;

- = =B
A responsible — E —
for B, C, D. n le--1--c
It depends on E, | :
- Irresponsible. ! S
- of
E depends on y !
F,GandE.A |& [--+->c
depends on it. E :
IS responsible and Dk

Irresponsible.

00 Pacq‘}?}g%]%){(?]s]lf%n Principles

A responsible for
B, C, D, E. Itwill
be hard to change.

E depends on A,
F,Gand H. Itis
irresponsible and
will be easy to
modify.

26

4.4 SDP Summary

* Organise package dependencies in the
direction of stabllity

* (In-) Stability can be quantified -» |-Metric

* Dependence on stable packages
corresponds to DIP for classes

— Classes should depend upon (stable)
abstractions or interfaces

— These can be stable (hard to change)

00 Pa&h&gg Ir)ﬁls]lf%n Principles

27

4.4 Stable Abstractions Principle
(SAP)

Stable packages should be abstract packages.

Unstable packages should be concrete packages.
Robert Martin

Stable packages contain high level design. Making them
abstract opens them for extension but closes them for
modifications (OCP). Some flexiblility is left in the stable
hard-to-change packages.

0]0] Pacq‘}{ﬁg%]%){?ls]lﬁ‘]n Principles 28

4.4 Quantifying Abstractness

* The Abstractness of a package can be
guantified

e Abstractness A Is defined as the fraction of
abstract classes in a package.

* Corresponds to abstract classes

— Abstract classes have at least one pure virtual
member function

— Abstract packages have at least one abstract
class

00 Pac?»}?}%%]%){?ls]lﬁ‘\n Principles

29

4.4 Correlation of Stability and
Abstractness

* Abstract packages should be responsible
and independent (stable)

— Easy to depend on

* Concrete packages should be irresponsible
and dependent (unstable)

- Easy to change

00 Pacq‘}?}g%]%){(?]s]lf%n Principles

30

4.4 The A vs | Plot

Abstractness

Abstract and stable
- good

Stable and concrete
- problematic,

| Abstract and unstable
— probably useless

Unstable and concrete

|
|
|
|
I~ good
|

CLHEP, STL,
DB schema ok,
not volatile

00 Pacq‘}?}g%]%){(?]s]lf%n Principles

 —
L

Instability

31

4.4 Distance from Main Sequence
D-Metric

D = ‘ A+1-1 ‘ Normalised so that D € [0,1]

Can use mean and standard deviation to set control limits
Can find troublesome packages

Concrete and stable packages like CLHEP or STL will
have D = 1

0]0] Pa&l_{‘ﬁg%]%){(?]s]lf%n Principles 32

4.4 Examples from BaBar

Main Sequence

Inrtakility

00 Pac?»}?}%%]%){(fls]lf%n Principles

Offline code packages
release 6.0.1 (early 1999)

Much of the BaBar code at
the time was too concrete
for its stability

At least the problem was

* | recognised ...

33

4.4 SAP Summary

e Stable packages should be a

* In a large project packages s
balance of Abstractness and

oStract

nould have a
Instability

- Lie close to the main sequence in A-I-plot
* Metrics | and A help to quantify code guality

e Other metrics exist too

— Code volume and code growth rate

— Bug discovery and extinction rate

00 Pa&h&gg II)ﬁ]S]lf’%n Principles

34

4.5 Mapping Packages

 The BaBar example

— Each package corresponds to a directory with
flat structure under individual CVS/SVN/...
control

— Contains headers (.hh), code (.cc), docs

- GNUmakefile fragment for building and
dependencies

— Build target: link library and possibly binaries
- #include “package/class.hh’

* Works well ... easy to understand

0]0] Pa&h&g%]%){?]s]lf%n Principles 35

4.5 O0OD Summary

. Class Design + Package Design
Principles Principles
- Single Responsibility - Eeu_s.e-IRelease
- Open-Closed qUIvaience

. o — Common Closure
— Liskov Substitution

. - Common Reuse
- Dependency Inversion

. — Acyclic Dependencies
- Interface Segregation |
- Stable Dependencies

- Stable Abstractions

0]0] Pa&h&g%]%){?]s]lf%n Principles 36

