
4 OO Package Design Principles

4.1 Packages Introduction
4.2 Packages in UML
4.3 Three Package Design Principles
4.4 Development Environment (Three more principles)
4.5 Summary

OO Package Design Principles
 Stefan Kluth

2

4.1 Packages Introduction

● What is a package?
– Classes are not sufficient to group code
– Some classes collaborate → dependencies
– Some don't know each other

● Grouping related classes together seems
natural
– But how?
– Dependencies between packages

OO Package Design Principles
 Stefan Kluth

3

4.1 Package

● A package is a group of classes
● Classes in a package are often compiled

together into a library
– but unit of compilation is mostly individual class

● A package is a unit for testing
● A package can be a releasable component

– a CVS/SVN/git/hg/... module

OO Package Design Principles
 Stefan Kluth

4

4.2 Packages in UML

A package

A package with classes
shown inside

A dependency between packages

OO Package Design Principles
 Stefan Kluth

5

4.2 Realisation

GUI depends on AbsUI

Associations exist between classes
in GUI and AbsUI

ServerStuff realises AbsUI,
it is a concrete package

An inheritance relationship exists
between classes in AbsUI and
ServerStuff

AbsUI is an abstract package

OO Package Design Principles
 Stefan Kluth

6

4.3 Three Package Design
Principles

● Reuse-Release Equivalency Principle
● Common Closure Principle
● Common Reuse Principle

OO Package Design Principles
 Stefan Kluth

7

4.3 Reuse-Release Equivalency
Principle (REP)

The unit of reuse is the unit of release
Bob Martin

It is about reusing software.

Reuseable software is external software,
you use it but somebody else maintains it.
There is no difference between commercial
and non-commercial external software for reuse.

OO Package Design Principles
 Stefan Kluth

8

4.3 Reuse-Release Equivalency

● Expectations on external software
– Documentation

● complete, accurate, up-to-date

– Maintainance
● bugs will be fixed, enhancements will be considered

– Reliability
● no major bugs
● no sudden changes
● can stay with proven versions (for a while)

OO Package Design Principles
 Stefan Kluth

9

4.3 Release Control

● Requirements for reuseable software
– Put reuseable components into a package
– Track versions of the package
– Assign release numbers to stable releases
– Stable releases need release notes
– Allow users to use older releases for a while

● The unit of reuse is the unit of release

OO Package Design Principles
 Stefan Kluth

10

4.3 REP Summary
● Group components (classes) for reusers
● Single classes are usually not reuseable

– Collaborating classes make up a package
● Classes in a package should form a

reuseable and releaseable module
– Module provides coherent functionality
– Dependencies on other packages controlled
– Requirements on other packages specified

● Reduces work for the reuser

OO Package Design Principles
 Stefan Kluth

11

4.3 Common Closure Principle
(CCP)

Classes which change together belong together
Bob Martin

Minimise the impact of change for the programmer.

When a change is needed, it is good for the programmer
if the change affects as few packages as possible, because
of compile and link time and revalidation

OO Package Design Principles
 Stefan Kluth

12

4.3 From OCP to CCP
● OCP: Classes should be open for extension,

but closed for modification
– This is an ideal
– Classes designed for likely kinds of changes

● Cohesion of closure for packages
– Classes in a package should be closed to the

same kinds of changes
– Changes will be confined within few packages

● Reduces frequency of release of packages

OO Package Design Principles
 Stefan Kluth

13

4.3 CCP Summary

● Group classes with similar closure together
– package closed for anticipated changes

● Confines changes to a few packages
● Reduces package release frequency
● Reduces work for the programmer

OO Package Design Principles
 Stefan Kluth

14

4.3 Commom Reuse Principle
(CRP)

Classes in packages should be reused together
Bob Martin

Packages should be focused, users should
use all classes from a package

CRP for packages is analogous to SRP for classes

OO Package Design Principles
 Stefan Kluth

15

4.3 Common Reuse
● A package brings in all its dependencies
● User only interested in a few classes

– the user code still depends on all dependencies
of the package

– the user code must be recompiled/relinked and
retested after a new release of the package,
even if the actually used classes didn't change

● CRP helps to avoid this situation

OO Package Design Principles
 Stefan Kluth

16

4.3 CRP Summary

● Group classes according to common reuse
– avoid unneccessary dependencies for users

● Following the CRP often leads to splitting
packages
– Get more, smaller and more focused packages

● CRP analogous to SRP for classes
● Reduces work for the reuser

OO Package Design Principles
 Stefan Kluth

17

4.3 The Triad Triangle

REP: Group
for reusers

CCP: Group for
maintainer

CRP: Split to get
common reuse

Unneeded
releases

Little reuser
convenience

Changes in
many packages

OO Package Design Principles
 Stefan Kluth

18

4.4 The Development
Environment

● Controlling relations between packages
– Critical for large projects
– Programming, compile and link time

● Three more package design principles
– Acyclic Dependencies
– Stable Dependencies
– Stable Abstractions

● Other aspects of development environment

OO Package Design Principles
 Stefan Kluth

19

4.4 The Acyclic Dependencies
Principle (ACP)

The dependency structure for packages must be
a Directed Acyclic Graph (DAG)

Stabilise and release a project in pieces
Avoid interfering developers → Morning after syndrome
Organise package dependencies in a top-down hierarchy

OO Package Design Principles
 Stefan Kluth

20

4.4 Morning-After-Syndrome
● Not the one after an extended pub crawl
● You work on a package and eventually it

works → you go home happy
● The next day your package is broken!

– A package you depend upon changed
– Somebody stayed later or came in earlier

● When this happens frequently
– Developers interfere with each other
– Hard to stabilise and release

OO Package Design Principles
 Stefan Kluth

21

4.4 Dependencies are a DAG
It may look complicated,
but it is a DAG (Directed
Acyclic Graph)

Can exchange
ObjyIO and RootIO

OO Package Design Principles
 Stefan Kluth

22

4.4 Dependency Cycles

A cycle between Framework
and ObjyIO

Must develop together

May need multipass link

OO Package Design Principles
 Stefan Kluth

23

4.4 ADP Summary
● Dependency structure of packages is a DAG
● Dependency cycles → Morning-After-

Syndrome
● Dependency hierarchy should be shallow
● Break cycles with

– Abstract interfaces (DIP)
– Splitting packages (CRP)
– Reorganising packages

OO Package Design Principles
 Stefan Kluth

24

4.4 Stable Dependencies Principle
(SDP)

Dependencies should point in
the direction of stability

Robert Martin

Stability: corresponds to effort required to change a package
stable package → hard to change within the project
Stability can be quantified

OO Package Design Principles
 Stefan Kluth

25

4.4 Quantifying Stability
A is a stable package,
many other packages
depend on it
→ Responsible

I = 0

A is unstable, it
depends on many
other packages
→ Irresponsible

I = 1

C
a
= # classes outside the package

 which depend on classes
 inside the package
 (incoming dependencies)

C
e
= # classes outside the package

 which classes inside the
 package depend upon
 (outgoing dependencies)

I=
Ce

CaCe

Instability
I-Metric

OO Package Design Principles
 Stefan Kluth

26

4.4 SDP Example

E depends on
F, G and E. A
depends on it. E
is responsible and
irresponsible.

A responsible
for B, C, D.
It depends on E,
→ irresponsible.

A responsible for
B, C, D, E. It will
be hard to change.

E depends on A,
F, G and H. It is
irresponsible and
will be easy to
modify.

Bad Good

OO Package Design Principles
 Stefan Kluth

27

4.4 SDP Summary

● Organise package dependencies in the
direction of stability

● (In-) Stability can be quantified → I-Metric
● Dependence on stable packages

corresponds to DIP for classes
– Classes should depend upon (stable)

abstractions or interfaces
– These can be stable (hard to change)

OO Package Design Principles
 Stefan Kluth

28

4.4 Stable Abstractions Principle
(SAP)

Stable packages should be abstract packages.
Unstable packages should be concrete packages.

Robert Martin

Stable packages contain high level design. Making them
abstract opens them for extension but closes them for
modifications (OCP). Some flexibility is left in the stable
hard-to-change packages.

OO Package Design Principles
 Stefan Kluth

29

4.4 Quantifying Abstractness
● The Abstractness of a package can be

quantified
● Abstractness A is defined as the fraction of

abstract classes in a package.
● Corresponds to abstract classes

– Abstract classes have at least one pure virtual
member function

– Abstract packages have at least one abstract
class

OO Package Design Principles
 Stefan Kluth

30

4.4 Correlation of Stability and
Abstractness

● Abstract packages should be responsible
and independent (stable)
– Easy to depend on

● Concrete packages should be irresponsible
and dependent (unstable)
– Easy to change

OO Package Design Principles
 Stefan Kluth

31

4.4 The A vs I Plot

Abstractness
A

I
Instability

1

0 1

M
ain Sequence

Abstract and unstable
→ probably useless

Unstable and concrete
→ good

Abstract and stable
→ good

Stable and concrete
→ problematic,

CLHEP, STL,
DB schema ok,
not volatile

OO Package Design Principles
 Stefan Kluth

32

4.4 Distance from Main Sequence
D-Metric

D = | A+I-1 | Normalised so that D ∈ [0,1]

Can use mean and standard deviation to set control limits

Can find troublesome packages

Concrete and stable packages like CLHEP or STL will
have D ≈ 1

OO Package Design Principles
 Stefan Kluth

33

4.4 Examples from BaBar

Offline code packages
release 6.0.1 (early 1999)

Much of the BaBar code at
the time was too concrete
for its stability

At least the problem was
recognised ...

OO Package Design Principles
 Stefan Kluth

34

4.4 SAP Summary
● Stable packages should be abstract
● In a large project packages should have a

balance of Abstractness and Instability
– Lie close to the main sequence in A-I-plot

● Metrics I and A help to quantify code quality
● Other metrics exist too

– Code volume and code growth rate
– Bug discovery and extinction rate

OO Package Design Principles
 Stefan Kluth

35

4.5 Mapping Packages
● The BaBar example

– Each package corresponds to a directory with
flat structure under individual CVS/SVN/...
control

– Contains headers (.hh), code (.cc), docs
– GNUmakefile fragment for building and

dependencies
– Build target: link library and possibly binaries
– #include “package/class.hh”

● Works well ... easy to understand

OO Package Design Principles
 Stefan Kluth

36

4.5 OOD Summary

● Class Design
Principles
– Single Responsibility
– Open-Closed
– Liskov Substitution
– Dependency Inversion
– Interface Segregation

● Package Design
Principles
– Reuse-Release

Equivalence
– Common Closure
– Common Reuse
– Acyclic Dependencies
– Stable Dependencies
– Stable Abstractions

