Forward Region Calorimetry

Szymon Kulis

AGH-UST Cracow on behalf of **FCAL Collaboration**

72. **PRC Meeting** 25/10/2011 DESY Hamburg

Szymon Kulis

Challenges of Forward Region

for ILC and CLIC

BeamCal

low polar angle electron tagging

BeamCal & Pair Monitor

beam tuning and beam diagnostics (% precision) fast feedback using special option of the ASICs

LumiCal

precise luminosity measurement (10⁻³ at 500 GeV @ ILC, 10⁻² at 3 TeV @ CLIC) derived from the expected statistics of the high cross section physics channels

Challenges: high precision (LumiCal), radiation hardness (BeamCal), very fast read-out (both)

Detector Design Studies for ILC

PUBLISHED BY IOP PUBLISHING FOR SISSA

RECEIVED: September 15, 2010 ACCEPTED: November 12, 2010 PUBLISHED: December 7, 2010

Forward instrumentation for ILC detectors

ollaboration recision design

inst

H. Abramowicz,^a A. Abusleme,^b K. Afanaciev,^c J. Aguilar,^d P. Ambalathankandy,^d P. Bambade,^e M. Bergholz,^{f,1} I. Bozovic-Jelisavcic,^g E. Castro,^f G. Chelkov,^h

C. Coca,^{*i*} W. Daniluk,^{*j*} A. Dragone,^{*k*} L. Dumitru,^{*i*} K. Elsener,^{*i*} I. Emeliantchik,^{*c*} T. Fiutowski,^d M. Gostkin,^h C. Grah,^{f,2} G. Grzelak,^{j,3} G. Haller,^k · · · ·

A. Ignatenko,^{c,4} M. Idzik,^d K. Ito,^m T. Jovin,^g E. Kielar,^j J. Kotula Systematics of luminosity measurement at 500GeV S. Kulis,^d W. Lange,^f W. Lohmann,^{f,1,5} A. Levy,^a A. Moszczynsk O. Novgorodova,^{*f*,1} M. Ohlerich,^{*f*,1} M. Orlandea,^{*i*} G. Oleinik,^{*n*} K. A. Olshevski,^{*h*} M. Pandurovic,^g B. Pawlik,^{*j*} D. Przyborowski,^{*d*} Y. A. Sailer,⁷ R. Schmidt,^{*f*,1} B. Schumm,^{*o*} S. Schuwalow,^{*f*} I. Smiljan Y. Takubo,^m E. Teodorescu,ⁱ W. Wierba,^j H. Yamamoto,^m L. Zawie ^aTel Av<mark>iv University, Tel Aviv, Is</mark>i ^bstanford Un Design studies, background, ^cNCPITEP, Minsk, Beld**Systematic effects**, ^aAGH University of Sci**readout** electronic ^eLaboratoire de l'Accelerateur Lineaire, Orsay, France I DESY Zeuthen, Germany **500 GeV advanced**

^gVinca Institute of Nuclear Sciences, University of Belgrade, Serbia

ⁱIFIN-HH, Bucharest, <u>Romania</u>

24/10/2011 PRC - Forward Region Calorimetry

Source	Value	Uncertainty	Luminosity Uncertainty
σ_{θ}	$2.2{ imes}10^{-2}$ [mrad]	100%	1.6×10^{-4}
Δ_{θ}	$3.2{ imes}10^{-3}$ [mrad]	100%	1.6×10^{-4}
<i>a</i> _{res}	0.21	15%	10 ⁻⁴
luminosity spectrum			10 ⁻³
bunch sizes σ_x , σ_z ,	655 nm, 300 $\mu{\rm m}$	5%	1.5×10^{-3}
two photon events	2.3×10^{-3}	40%	0.9×10^{-3}
energy scale	400 MeV	100%	10 ⁻³
polarisation, e^- , e^+	0.8, 0.6	0.0025	1.9×10^{-4}
total uncertainty			$2.3 imes10^{-3}$

* 100%= Upper limit – the size of effect is taken as uncertainty

Distributions of the polar

Detector Design Studies for CLIC

Szymon Kulis

ollaboration

BeamCal sensors

Very high radiation load (a dose of several MGy per year)

Potential sensor materials:

- GaAs (by JINR Dubna)
 - Operational up to 0.5 Mgy (CCE ~ 10%)
 - Available on (small) wafer scale
- Sapphire
 - Charge collection efficiency a few %
 - Extremely high radiation hardness: after 12 MGy dose it has 30% of initial efficiency
 - Drawback: slow signals
- Poly-Crystalline Diamond (by Element Six and IAF)
 - High radiation hardness: tests up to 7 MGy
 - Availability on wafer scale
 - Drawback: high price
- Tested in ongoing experiments (spin-offs):
 - Beam Halo Monitor @ FLASH
 - Beam Condition Monitor @ CMS

Large area BeamCal pad GaAs sensor prototype

- 500 µm thick detector
- 87 pads (20 40mm²)
- Leakage ~ 7nA/mm²
- Capacitance ~ 0.3pF/mm²

pCVD Diamond

- 1 x 1 cm2
- 200-900 µm thick

BeamCal readout electronic

- Prototypes in 180-nm TSMC process
- Charge sensitive preamplifier (CSA)
 - precharge circuit for to maximize output swing
 - Gated reset for quick baseline restoration
- Switched-Capacitor filter
- Analog adder to provide fast feedback
- ADC : 10-bit SAR ADC

Prototype ASIC Layout

Shaper output

Szymon Kulis

Pair Monitor

Pair Monitor is a silicon pixel detector to measure the beam profile at IP.

Detector radius 10cm, Pixel size 400x400 $\mu m2$, Total number of pixels ~ 200.000

- First readout ASIC
 - CMOS process: 0.25 µm TSMC
 - Chip size : 4 x 4 mm², 6 x 6 pixels (36)
 - Test setup based on KEK-VME 6U module was prepared
 - Sensor needs to be bound bonded
- Silicon On Insulator (SOI) technology first readout prototype
 - The sensor and readout electronics are integrated in the SOI substrate. (monolithic)
 - SOI 0.2 µm CMOS process
 - Chip size : 2.5 x 2.5 mm², **3 x 3** pixels (9) (only readout)
 - The noise level is much smaller than typical signal level noise : 260 e⁻ (+130 e⁻/pF) excepted signal : 20000 e⁻
 - All the ASIC components work correctly.

LumiCal readout

Sensor

- p⁺ on n silicon sensor 300µm thick
- Pad capacitance < 25 pF
- Leakage current
 < 5nA @ 500V
- Depletion voltage
 < 50V

FrontEnd

- 8 channels of preamplifier + PZC
 + CRRC shaper (Tpeak ≈ 60 ns)
- Cdet up to 100pF
- variable gain: dynamic range from ~2fC up to 10 pC
- event rate up to 3 MHz
- crosstalk < 1%

ADC Design

- 8 channels of pipeline ADC
- Multimode Digital serializer
- 9.7 ENOB up to 25 Ms/s
- Power consumption: ~1.2mW/channel/MHz
- Gain spread < 0.1 %
- Crosstalk < -80dB
- Power pulsing embedded

Used during most recent testbeams

Testbeam Setup 2010

BeamCal / LumiCal sensor + LumiCal front-end + Commercial Sampling ADC

Szymon Kulis

Testbeam Results 2010

(LumiCal Sensor)

- Front-ends signal shape matches simulations
- Single electron spectrum matches Landau convoluted with Gauss distribution
- Signal to noise ratio (S/R) above 20
- Crosstalk <1%

0

5

10

ζ [μ m]

14

12

10

30

X [μ m]

20

15

25

Testbeam Results 2010

(BeamCal Sensor)

- Signal to noise ratio above 20
- Charge collection homogeneity

• Charge sharing between pads

Szymon Kulis

Detector Module

towards testbeam 2011

- 32 channels fully equipped channels (Sensor + Front-end +ADC)
- ADC sampling rate is up to 20 MS/s (6.4 Gbps)
- Data can be transferred using USB
- Signal handshaking with
 Trigger Logic Unit (TLU)
- ADC Clock source
 - Internal (asynchronous with beam operation) – testbeam & CLIC mode
 - External (beam clock used to synchronize with beam) ILC mode

Deconvolution as a solution for asynchronous sampling

- Motivation
 - Time tagging for CLIC (CLIC Note)
 - Testbeam data analysis (asynchronous sampling)
- Properties
 - reduces (infinite) number of CR-RC pulse samples to 1 or 2 non zero samples !
 - Great pile-up resolving capabilities (event delayed by 2~3 T_{smp})
 - Time resolution down to 1-2 ns possible for $T_{peak} \sim 60$ ns
- Deconvolution signal processing technique based on digital samples was developed and heavily tested

Sz. Kulis, M. Idzik | Workshop on timing detectors, 29 Nov to 01 Dec 2010, Cracow Triggerless readout with events time and amplitude reconstruction based on deconvolution algorithm.

24/10/2011 PRC - Forward Region Calorimetry

Amplitude

Testbeam Setup 2011

LumiCal sensor + LumiCal front-end + Multichannel ADC + Data concentrator

Szymon Kulis

Testbeam Results 2011

• S/R is above 20 for each channel

aboration

Next testbeam in November

Other ongoing activities

A flexible mechanical infrastructure will be built to allow testing individual sensors or complete segments of LumiCal or BeamCal Calorimeters.

(up to **30 tungsten plates** with variable distance between plates)

Radiation Damage Study Facility

will allow performing radiation hardness studies under more realistic conditions, e.g. considering also the hadronic component in electromagnetic showers

Future plans

AIDA project schedule :

- Flexible mechanical infrastructure: design 2012, manufacturing 2013, ready 2014
- Multichannel readout ASICs (for LumiCal): design start 2011, 1st prototype production 2012, 2nd 2013, final 2014
- Complete prototype of sensor plane 2013-2014
- Detector position monitoring using laser beams
- DAQ:

1st DIF prototype 2011, prototype of complete DAQ 2012, ready 2013

- Design fixed beginning 2013
- Production 2014

ILC detector DBD 2012:

- completing the performance measurements with fully assembled sensor plane prototypes
- refining design considerations (MC studies)

Thank you for attention

BACKUP SLIDES

LumiCal Precise Measurement of Luminosity

- Bhabha scattering $ee \rightarrow ee$ is the gauge process
- Counting Bhabha events in a well known acceptance region L = N/σ
- High statistics at low angles
 N_{Bhabha} ~ 1/θ³
- Well known electromagnetic process, the current limit on the theoretical cross section error is at ~5 10⁻⁴.
- Corrections (with uncertainties) are needed because of background:
 - 2 photon processes
 - EM deflection and energy loss due to beamstrahlung of Bhabha's electrons

Required precision is:

- ΔL/L ~ 10⁻⁴ (GigaZ@ILC)
- $\Delta L/L < 10^{-3}$ (ILC)
- $\Delta L/L < 10^{-2}$ (CLIC)

LumiCal requirements

Option	Req. ∆L/L	Z _{nom} [mm]	R _{min} [mm]	θ _{min} [rad]	∆θ _{max} [rad]	∆z _{max} [mm]	^{∆r} max [mm]
ILC GigaZ	≤ 10-4	2500	80	0.032	1.6x10-6	< 0.125	< 4x10-3
ILC 500 GeV	≤10-3	2500	80	0.032	1.6x10-5	< 1.25	< 4x10-2
CLIC 3 TeV	≤ 10-2	2654	100	0.038	1.9x10-4	< 13.3	< 0.5

The contribution of polar angle offset to relative error on luminosity can be estimated using approximate formula

$$\frac{\Delta L}{L} \approx 2 \frac{\Delta \Theta}{\Theta_{min}}$$

 $\Delta z_{\rm max}$ and $\Delta r_{\rm max}$ is simple trigonometry ...

Systematic uncertainties of luminosity measurement at 500GeV

Source	Value	Uncertainty	Luminosity Uncertainty
σ_{θ}	$2.2{ imes}10^{-2}$ [mrad]	100%	1.6×10^{-4}
Δ_{θ}	$3.2{ imes}10^{-3}$ [mrad]	100%	1.6×10^{-4}
a _{res}	0.21	15%	10 ⁻⁴
luminosity spectrum			10^{-3}
bunch sizes σ_x , σ_z ,	655 nm, 300 μ m	5%	1.5×10^{-3}
two photon events	2.3×10^{-3}	40%	0.9×10^{-3}
energy scale	400 MeV	100%	10 ⁻³
polarisation, e ⁻ , e ⁺	0.8, 0.6	0.0025	1.9×10^{-4}
total uncertainty			$2.3 imes 10^{-3}$

* 100%= Upper limit – the size of effect is taken as uncertainty

- It is proven (in simulation) that luminosity can be measured at 500 GeV center of mass energy at a permille level
- Most of the systematic effects can be taken as corrections once their experimental uncertainties are known (θ, miscounts due to physics background, BHSE).

LumiCal performance studies

Szymon Kulis

ollaboration

LumiCal readout requirement

Szymon Kulis

aboration

LumiCal baseline design

Parameter	ILC	CLIC
Absorber [mm]	Tungsten 3.5	Tungsten 3.5
Sensor [µm]	Si 300	Si 300
R inner [mm]	80	100
R outter [mm]	195.2	290
Θ inner [mrad]	31	37
Θ outter [mrad]	78	110
Z pos [mm]	2500	2654
Layers	300	40
Mass [kg]	210	660

BeamCal performance studies

The energy deposited by beamstrahlung pairs after one bunch. Superimposed is the deposition of a single high energy electron. The efficiency to detect single high energy electrons on top of the beamstrahlung background

oration

BeamCal radiation load

Beam-Beam Interactions

FCAL Spin offs

Beam Halo Monitor @ FLASH

- Several sensors (poly-crystalline CVD diamonds and mono-crystalline sapphires) developed within FCAL were used in Beam Halo Monitor for FLASH
- Used for beam dump diagnostic
 - Beam tuning
 - Alarm signals generation

Beam Condition Monitor @ CMS

- Utilizes single-crystal Chemical Vapor Deposition diamonds (sCVD) – small and fast
- Sensitive to fast changes of beam conditions
- Unprecedentedly high radiation
- Diagnostics with a time resolution better then the time between BX

Detector alignment studies

- High-accuracy luminosity measurements require very precise measurement of the LumiCal detector position (an accuracy below 100 um in X,Y, Z directions is required)
- The laser alignment system (LAS) based on Frequency Scanning Interferometry (FSI) is considered for LumiCal and Vertex
- **Space** for laser beams around vertex
 - Carbon tube with glued carbon pipes (left) less material, less stiffness, limited number of laser beams
 - Double layer carbon tube (right) more material, more stiffness, lot of space for many laser beams
- Reference points on QD0

(recently) Published References

Pair Monitor ASICS :

Yutaro Sato et all, **"Readout ASIC of pair-monitor for international linear collider"** Nucl. Instr. and Meth. A 623 (2010) 501–503

LumiCAL front-end ASIC:

M. Idzik, Sz. Kulis, D. Przyborowski **"Development of front-end electronics for the luminoisty detector at ILC"** Nucl. Instr. and Meth. A 608 (2009) pp.169-174

LumiCal ADC ASICs:

M. Idzik, K. Swientek, T. Fiutowski, S. Kulis, P. Ambalathankandy **"A power scalable 10-bit pipeline ADC for Luminosity Detector at ILC"** JINST 6 P01004 2011

M Idzik, K Swientek, Sz. Kulis "Development of pipeline ADC for the Luminosity Detector at ILC" JINST 5 P04006 2010 Link

BCM@CMS

A. Bell et all **"Fast beam conditions monitor BCM1F for the CMS experiment"** Nucl. Instr. and Meth. A 614 (2010) 433–438

LumiCal frond-end electronic

- Cdet ≈ 0 ÷ 100pF
- 1st order CRRC shaper (Tpeak ≈ 60 ns)
- variable gain:

aboration

- calibration mode MIP sensitivity (~4fC)
- physics mode input charge up to 10 pC
- prototypes fabricated and tested
 - power consumption 8.9 mW/channel
 - event rate up to 3 MHz
 - Crosstalk < 1%

See more : M. Idzik, Sz. Kulis, D. Przyborowski "Development of front-end electronics for the luminoisty detector at ILC" Nucl. Instr. and Meth. A 608 (2009) pp.169-174

ASIC contains 8 channels

LumiCal Multichannel ADC

- Design
 - 8 channels of pipeline ADC
 - Multimode Digital multiplexer/serializer
 - High speed LVDS drivers (~1GHz)
 - Low power DAC control references
 - Precise BandGap reference source
 - Temperature sensor
- Performance
 - 9.7 ENOB up to 25 Ms/s (8 channels)
 - Power scales linearly with sampling rate
 ~1.2mW/channel/MHz
 - ADC core works up to 50 Ms/s (1 channel)
 - Gain spread < 0.1 %</p>
 - Crosstalk < -80dB</p>
 - Power pulsing embedded

- Motivation : perform radiation hardness studies under more realistic conditions, e.g. considering also the hadronic component in electromagnetic showers
- Modularity will allow easy evaluation of different sensor technologies
- Cooling module to avoid spurious annealing effects
- Firsts runs foreseen at SLAC, several samples should be irradiated up to 100 MRad

Mechanical Infrastructure

A **flexible mechanical infrastructure** will be built to allow testing individual sensors or complete segments of LumiCal or BeamCal Calorimeters.

The mechanical structure:

- up to **30 tungsten plates** of 3.5 mm thickness paired with sensor planes.
- Variable distance between plates (2, 1 or 0.5 mm).
- Requirement of **50 micron mechanical accuracy** (roughness, flatness) of each tungsten plate and of the distance between the plates.

Tungsten machining tests already started. Differetnt material options are considered for prototype (pure Tungsten / Densimet / Inermet / Sparkal X)

Detector Design Studies for CLIC

CLIC Conceptual Design Report

CLIC CONCEPTUAL DESIGN REPORT

VOL. 2: Physics and Detectors at CLIC

9 V	ery Forward Calorimeters	149
9.1	Introduction	149
9.2	Optimisation of the Forward Region	149
9.3	The Luminosity Calorimeter (LumiCal)	151
9.4	The Beam Calorimeter (BeamCal)	154

CLIC Notes

- Study of readout architectures for triggerless high event rate detectors at CLIC
- The CLIC_ILD_CDR Geometry for the CDR Monte Carlo Mass Production
- Radiation Dose in the QD0 Quadrupole in the CLIC Interaction Region
- Simulation of Beam-Beam Background at CLIC
- A Luminosity Monitor for CLIC