Iumn

SPONSORED BY THE

UH % Federal Ministry
iti CLUSTER OF EXCELLENCE of Education
Universitat Hamburg and Research
DER FORSCHUNG | DER LEHRE | DER BILDUNG QUANTUM UNIVERSE

columnflow

— Refactoring of Task Array Functions —

Marcel Rieger

UHH Framework Meeting

28.2.2025




Refactoring progress

2 Suggestion: reducer

Marcel

e Our usual "interface" for defining columns to keep: produces set defined by task array functions

e Only difference: columns saved by ReduceEvents task

s Columns are defined in config under keep_columns field

O
{Gammmuﬂh cfg.x.keep_columns DotDict.wrap({
"cf.ReduceEvents": {
lfns
3
lfns e ColumnCollection.MANDATORY_COFFEA,
l _____________________________ "ol \\ "Jet.{pt,eta,phi,mass,hadronFlavour,puld,hhbtag,btagPNet*,btagDeep*}",
------------------------------------------ i "Electron.*",
SelectEvents ¢

E "Muon. *"

- L “Tau.*",
masks e cols "PV "
~, . .npvs",

stats ReduceEvents

ColumnCollection.ALL_FROM_SELECTOR,
masks cols / \sizes }
| | \ ?

s Lead to misunderstandings in the past, but wasn't too unusual

e [he need for an additional feature changes this

m  Use case: save only specific GenPart's for use in e.g. ProduceColumns

s Right now we need to save them in output columns of SelectEvents
s  \Waste of resources since only selected events will be stored

e Idea: add a new reducer, which is actually just a producer

m On thecli: 1aw run cf.PlotVariableslD --selector foo --reducer bar

= Name be encoded into output paths

= Add new @reducer or just create them via @roducer? Name clashes?



Refactoring progress

3 Suggestion: hist producer Marcel

e We have a weight_producer in place that

m computes the event weight to be applied, and

m can also impose a late-stage selection

skip_weight_producer:
events, weight - self.weight_producer_inst(events, task-self)

weight = ak.Array(np.ones(len(events), dtype-np.float32))

MergeHistograms

e However, multiple analyses could profit from more flexibility for customizing

m histogram axes
s different hist storage (int, double, float™) and weight types
I the way that events and weights are filled

> Many use Cases

e Generalizing weight_producer to hist_producer (7) might come in handy



Refactoring progress

4 Update plan

Marcel

multi config
task array
‘ function update

-!-
e



Refactoring progress

4 Update plan

Marcel

multi config
task array
‘ function update
~ 1] Je«————weare here
\

e

additional breaking changes
| (reducer, hist prod, docs)

legacy /0.2



Backup



Refactoring progress

ssues with current implementation

Marcel

GetDatasetLFNs

N

Ifns CalibrateEvents

e Tlask array functions are actually invoked at four locations ©

...... ol Ifns

m Calibrators

SelectEvents
______________ cols

N

stats ReduceEvents . S e | e Cto r
masks cols siﬁes
Producers
MergeSelectionStats events .
P = W - h d
\ x eignt producer
MergeSelectionMasks MergedReducedEvents
evgnts
/
masks ProvideReducedEvents

o @i | @ Parameters like --calibrators known by all downstream tasks ——

CreateCutflowHistograms ProduceColumns events

hists’ hists\hists

Cutflow plots
PlotCutflow PlotCutflowVariables1D PlotCutflowVariables2D
wrapper
v ML Training

PlotCutflowVariablesPerProcess2D PrepareMLEvents

mlcols stats
either
events events MergeMLEvents MergeMLStats way

cols cols mlcols '“,,-'st'ats

MLTraining r

model
MLEvaluation
cols cols

-,,'-'"’-------------------------!ol!--------

X I

UniteColumns CreateHistograms

hists

Mergipg 2

MergeHistograms MergeMLEvaluation

hists/
{

MergeShiftedHistograms

data hists data hists data hists hists hists data hists cols

mc hists mc hists mc hists mc hists

) L

\ / Inference Plotd & tables \ /

CreateDatacards CreateYieldTable PlotVariables1D PlotVariables2D PlotShiftedVariables1D ‘ PlotMLResults ‘

wrapper wraiaper
H v
PlotVariablesPerProcess2D PlotShiftedVariablesPerProcess1D




Refactoring progress

6 Issues with current implementation

Marcel

e Tlask array functions are actually invoked at four locations ©

m Calibrators

m  Selector

m Producers

s Weight producer

e Parameters like --calibrators known by all downstream tasks

I Right now, each TAF and all dependencies are instantiated

s in each downstream task
s by each workflow and branch task
s unnecessarily multiple times
WiTraining (
R ~ lens of thousands of redundant calls
L @ T I Weird situations emerge R
! .
s Unclear when (e.g.) init is eproducer...)
_ _ def all_weights(self, events, ...):
W/ \ \ called and which attributes
- I are available @all_weights.init
fra e @“““ r e " " ﬂ e e def all_weights_init(self: WeightProducer) ->
| :Jhl: chh ssss ’ chh ssss ' N mth\ - { } - IIItIS Cal ed everyWhere, getattr(self, "dataset_inst", Nol
— ‘ so it hopefully works at
some point!?"




Refactoring progress

7 Paradigms & thoughts on shifts

Marcel

e [lask array functions are bound to three objects

= analysis instance 7

= config instance > "constants"

m dataset instance

~ [ hey will never change throughout its lifetime

e Depending on these, TAFs can have dynamic behavior

s Used / produced columns

s Other TAFs they depend on
I Which shifts they yield to the analysis
m ~ Example: once JEC is invoked, your analysis can depend on
eeeeee T B EE; JEC shifts
F/ ~ Highly important for tasks to understand where
B I Decisions can depend on the three "constants" above
v = and even runtime conditions
1 ~ Example: era-dependent number of DY weight uncertainties
& i — s My main take-away
hhhhh me ,ﬁ N mcg T me hists 1 1 jmchists T T - n n
| | | L s Shifts cannot be part of these "constants
s Currently they are and this causes a lot of headaches

wrapper wrapper

s Fixing this could lead to a heavily improved TAF handling




Refactoring progress

8 Refactored task array function interface

Marcel

e Upon creation, {analysis,config,dataset}_inst are passed to the TAF as members — they define the state

e Hooks called thereafter in various places

B @re_init(self)

~ New, called before dependency creation, can be used to control deps_kwargs, fixes current duplication issue

2 @ @init(self)

£ ~ Controls used / produced columns and other TAFs as dependencies, as well as shifts

§ m  @skip(self)

Q

= ~ Called during init, can decide whether TAF should be removed from dependencies

- m  @post_init(self, task)

S ~ New, can control used / produced columns (using task info and resolved shift), but no additional TAF deps
;§ m @requires(self, task, reqgs)

é ~ Allows adding extra task requirements

[\

m @setup(self, task, regs, inputs, reader_targets)

~ Allows setting up objects needed for actual function calls

m __call__(self, events, task, **kwargs)

~ Actual events chunk processing

m @teardown(self, task)

~ New, called after processing, but potentially before chunk merging, allows reducing memory footprint



9

Consequence

PlotShiftedVariablesPerProcess1D

Refactoring progress

Marcel

Task array functions can be created once and

passed to upstream tasks within O

Tasks outside these bu

to TAF instances, but |

Shifts in "overarching"

bbles don't need access

ust they class

tasks like plotting can

be simply gathered through upstream tasks

zz Still under development, ETA next week

Objects like {ML,Inference}Model can be treated
similar, however, implications not as deep



