
Accelerating
Data
Compression
Through Parallel Filter Processing Frederick Neu

Scientific Computing
Universität Hamburg

05/28/25 2025 HDF5 User Group Meeting

2

Motivation (Background)

• “Create some dataset and let’s see, how HDF5 handles it using LZ4 Filtering”
– Compression to reduce I/O load

– Counting ascending, odd numbers being “1”

– LZ4 compression ratio roughly 1.993 : 1 (Block size 8192 Byte)

• Tracing the dataset
– From API until final write

– Caching (LRU)

• Simply writing (a lot) to storage (no caching needed)
– Potential to introduce parallelism?

– --enable-threadsafe (dead)locking

3

Now: Writing a chunked dataset

• H5Dwrite(...)
– Native VOL connector
– POSIX VFD

• H5D__chunk_write() (./src/H5Dchunk.c)
3245. /* Iterate through nodes in chunk skip list */
3246. chunk_node = H5D_CHUNK_GET_FIRST_NODE(dset_info);
3247. while (chunk_node) {

     ⋮ (… creating chunk, place into cache, filter, write ...)
3359. /* Advance to next chunk in list */
3360. chunk_node = H5D_CHUNK_GET_NEXT_NODE(dset_info, chunk_node);
3361. }

4

Currently using multithreading

• HDF5 Asynchronous I/O VOL connector (https://hdf5-vol-async.readthedocs.io/en/latest/)

• Split chunk (older prototype)
o Chunks split into "sub chunks"
o Sub chunks asynchronously filtered

https://hdf5-vol-async.readthedocs.io/en/latest/

5

Ways to write

• Native VOL connector offers
– Standard (through H5Dwrite)

– Optional (through H5Dwrite_chunk)
● Unfortunately API function, deadlock likely if –-enable-threadsafe used

• Bypass
– RFC: Direct Chunk Write

● Raymond Lu (https://support.hdfgroup.org/releases/hdf5/documentation/rfc/DECTRIS%20Integration%20RFC%202012-11-29.pdf)

● “[…] bypass the library’s data conversion and filter pipeline and write data chunks directly to a dataset in the file.”
● Used by native VOL connector’s optional write

https://support.hdfgroup.org/releases/hdf5/documentation/rfc/DECTRIS%20Integration%20RFC%202012-11-29.pdf

6

Trust me, Property List

Queue

Data

Chunking function
(Async)

C0

C1

Cn

LZ4 Filter

LZ4 Filter

LZ4 Filter

H5D__chunk_direct_write(C0)

H5D__chunk_direct_write(C1)

H5D__chunk_direct_write(C2)

libh5lz4.so.0

• Setting up the Properties of a Dataset Object remains unchanged

• Introducing a new API (H5Dwrite_filter_parallel())
– Taking the whole dataset as parameter

– Internally using thread pool
● Chunking
● Applying filters as promised(!) to PList
● Writing (through VFD)

7

Into the Pool

• Chunking
– Asynchronous chunk creation (subset for each thread)

– Memory limiting possibility (save state, jump to Compressing)

• Compressing
– Dynamically loading filter into memory

● Applying to chunk

– Writing to storage
● potentially returning to Chunking, if previously Memory Limited

• Done
– Thread can be collected by parent process

8

Asynchronous Chunking

• Each thread has own subset
– Similar speeds (using memcpy) per chunk

• Completely thread independent chunking function
– Protecting only adding addresses into queue

• Flexible changing of status
– Chunking or Compressing

– Currently interrupted chunk is remembered
● Continues on return with no data loss

9

Parallel Filtering

• Dynamically loaded from shared library
– Based on Property List information (Trust)

● Fault, if filter not found

– Potentially all HDF5 registered Filters usable
● H5Z_class2_t struct registered

• Filter instructions fetched from Property List
– cd_nelmts, cd_values

• Filter(s) applied to each chunk independently
– After fetched from queue (protected)

– Itself asynchronous

• H5D__chunk_direct_write as soon as filtered
– Avails memory again

– Function mutex locked
● Causes dependency on next chunk write
● Threads with filtered chunks ready wait

– No further filtering
– Reduces to Parallel Filtering

10

What’s to expect?

• Thread alternating writes

• Continuous I/O
– With sufficient threads

• More efficient CPU usage
– Filtering while writing

11

Native H5Dwrite

12

Pthread Parallel Filtering

13

Benchmarks

1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

16

18

0

5

10

15

20

25

30

35

40

45

50

55

Average run time in s

LZ4

ZSTD

DEFLATE

Threads

S
ec

on
ds

S
ec

on
ds

 (
D

E
F

LA
T

E
)

0 20 40 60 80 100 120 140
10

100

1000

10000

Native
1748.560

2 Threads
873.736

6 Threads
291.705

64 Threads
27.706

128 Threads
14.210

DEFLATE

Power (DEFLATE)

Threads

S
ec

on
ds

● System: DKRZ Levante HPC (compute node, 2x AMD 7763 CPU; 128 cores in total)
● Problem: 3GiB raw data, 4MiB Chunks; (100 samples)

	Accelerating Data Compression
	Slide 2
	H5Dwrite ... 
	Current examples using multithreading
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

