Accelerating

Data
Compression

Through Parallel Filter Processing

Frederick Neu
Scientific Computing

M Universitat Hamburg
[2% Universitdat Hambur g

05/28/25 2025 HDF5 User Group Meeting

ﬁl%
Motivation (Background)

* “Create some dataset and let's see, how HDF5 handles it using LZ4 Filtering”
- Compression to reduce I/0 load
- Counting ascending, odd numbers being “1”
— LZ4 compression ratio roughly 1.993 : 1 (Block size 8192 Byte)
* Tracing the dataset
- From API until final write

- Caching (LRU)

* Simply writing (a lot) to storage (no caching needed)
- Potential to introduce parallelism?

- --enable-threadsafe (dead)locking

lllIIIIIIIIIIIIIIIIIIIIIIK:é;géééi
ﬁl%
Now: Writing a chunked dataset

H5Dwrite(...)
— Native VOL connector
- POSIX VFD

e H5D_ chunk write() (./src/H5Dchunk.c)

3245. /* Iterate through nodes in chunk skip list */
3246. chunk_node = H5D_CHUNK_GET_FIRST _NODE(dset_info);
3247. while (chunk_node) {
: (... creating chunk, place into cache, filter, write ...)
3359. /* Advance to next chunk in list */
3360. chunk_node = H5D_CHUNK_GET_NEXT_NODE(dset_info, chunk_node);
3361. }

ﬂl‘%
Currently using multithreading

e HDF5 Asynchronous I7/0 VOL connector (https://hdf5-vol-async.readthedocs.io/en/latest/)

Application

thread Fcreate || Dcreate || Dwrite Dclose Fclose |: Compute | Fereate
Async task
syneask queue @App thread computing, start I/O execution
T mm T m e A _ —,e—)—_[— """ T " " T TTTT T
Background | Walit E=IEEIEEESEIEER Walt
A N f o b o o o o B e

* Split chunk (older prototype)
0 Chunks splitinto "sub chunks"
0 Sub chunks asynchronously filtered

https://hdf5-vol-async.readthedocs.io/en/latest/

ﬂlﬁ
Ways to write

* Native VOL connector offers
- Standard (through H5Dwrite)
- Optional (through H5Dwrite_chunk)

* Unfortunately API function, deadlock likely if --enable-threadsafe used

* Bypass
- RFC: Direct Chunk Write
* Raymond Lu (https://support.hdfgroup.org/releases/hdf5/documentation/rfc/DECTRIS%20Integration%20RFC%202012-11-29.pdf)

* “[..]bypass the library’'s data conversion and filter pipeline and write data chunks directly to a dataset in the file.”

* Used by native VOL connector’s optional write

https://support.hdfgroup.org/releases/hdf5/documentation/rfc/DECTRIS%20Integration%20RFC%202012-11-29.pdf

ﬂl‘%
Trust me, Property List

» Setting up the Properties of a Dataset Object remains unchanged

* Introducing a new API (H5Dwrite_filter_parallel())
- Taking the whole dataset as parameter

- Internally using thread pool

e Chunking

Queue libh5Iz4.s0.0

* Applying filters as promised(!) to PList

LZ4 Filter]—)(H5D_chunk_direct_write(Co))

Lz4 Filter }—>{H5D__chunk_direct_write(C,))

* Writing (through VFD)

Lz4 Filter }——>(H5D__chunk_direct_write(C5))

ﬂlﬁ
Into the Pool

* Chunking

- Asynchronous chunk creation (subset for each thread)

No

- Memory limiting possibility (save state, jump to Compressing)
Chunking j(—

* Compressing

Memory filled Chunking complete

- Dynamically loading filter into memory

* Applying to chunk Compressing

- Writing to storage [

All compressed

* potentially returning to Chunking, if previously Memory Limited \ 4

* Done [>

- Thread can be collected by parent process

—il e
lllIlllllIlllllIlllIlIllIllIllIlIIllllIllIIlIlllIlIlIlllIlIIlIllIIIIllIlIlllIIlIlIIlllllIlllllllllllllllllllllll<i =
ﬂ%
l"_h"“u,__._/

Asynchronous Chunking

 Each thread has own subset

- Similar speeds (using memcpy) per chunk

* Completely thread independent chunking function

- Protecting only adding addresses into queue

* Flexible changing of status

— Chunking or Compressing

- Currently interrupted chunk is remembered

Continues on return with no data loss

Contiguous data

u(ﬂ Cc2 C3‘C4 C5|C6 C7

Thread pool (4 threads)
) 4

1) |(12)|(T3 (EE)
—)
c2
c1 c3| | |C4
) Chunks into queue
— >EEE
cs | ce c8
cr| | L

—)
—< =
— < |PE——

ﬂi =

l"_h"“m__,_/

Parallel Filtering

* Dynamically loaded from shared library * Filter(s) applied to each chunk independently

- Based on Property List information (Trust) - After fetched from queue (protected)

Fault, if filter not found - Itself asynchronous

- Potentially all HDF5 registered Filters usable

* H5D chunk direct write as soon as filtered
H5Z _class2_t struct registered

. : : . — Avails memory again
* Filter instructions fetched from Property List

- Function mutex locked
- cd_nelmts, cd_values _
* Causes dependency on next chunk write

* Threads with filtered chunks ready wait
= No further filtering

- Reduces to Parallel Filtering

ﬂl%
What's to expect?

* Thread alternating writes

e Continuous I/0

- With sufficient threads

* More efficient CPU usage

- Filtering while writing Thread 1 I Compute
Thread 2 " o 110
Thread 3 = ==
Thread 4 = =

I/O ops = = =

Compute ops TR

Native H5Dwrite

LZ4_compress_fast_extState

Lecompressfast
H5Z_filter_|z4

__GI__sbrk

1.223E+10 aggregated cycles:P cost in total

4.07E+09 (33.3%) aggregated cycles:P costs in LZ4_compress_fast (liblz4.50.1.9.4) and below.

Time Line Ex
¥ Search Event Source: cycles:P v
Events
Source
15s 20s 25s 3.0s 35s 40s 45s
| ' i ' i ' '

CPUs

cues IERRRRRRTRNTRRRRRRRNNN RRRRRD 0 DNRRRRER ORRERRRRRNRRRRRNNNNN
Processes
v norm513...

H5F__accum_write systrim LZ4_compress_fast H
H5PB_write |_Gl_|ibc_free ‘ H5Z_filter_|z4
H5F_shared_block_write H5MM_xfree H5Z_pipeline

H5D__chunk_unlock.isra.0
H5D__chunk_write
H5D__ write

H5VL__native_dataset_write
H5VL_dataset_write
H5D__write_api_common.constprop.0
H5Dwrite
main
libc start call main
2.043E+09 (16.7%) aggregated cycles:P costs in H5D__chunk_flush_entry (norm513MiB) and below.

Time Line &<
¥ | Search Event Source: ' cycles:P v
Rl
Events
Source
15s 20s 25s 30s 35s 40s 45s
R 1 ' 1 ' 1 '
CPUs
e NN RN AR R AN ARRNNRAN! | RUANAN N RARRARAN INRARTIARARTANINIA

Processes

~ norm513...

11

—<

Pthread Parallel Filtering

LZ4_compress_fast_extState

H5Z filter_|z4

H5VL__native_pool_function

thread_start::thread_work

H5PB_write
H5F_shared_block_write

H5VL__native_pool_function

thread_start::thread_work

thread_start thread_start

start_thread start_thread

_ clone3 _ clone3

1.247E+10 aggregated cycles:P cost in total 1.247E+10 aggregated cycles:P cost in total
3.774E+09 (30.3%) aggregated cycles:P costs in LZ4_compress_fast (liblz4.50.1.9.4) and below. 1.467E+09 (11.8%) aggregated cycles:P costs in HSD__chunk_direct_write (parallel_513MiB) and below.
Time Line =13 Time Line =1
¢ Search Event Source: | cycles:P v ¥ | Search

Events
Source A 28 S
CPUs
Processes

~- parallel_5...
paralle...
paraile... [N OB I BB I

paralle... | NN ISR IS S INNI SENE S N Il

- ' . [' ! . | ! ! | | | | ||

paralle.

Event Source: ' cycles:P v

Events
Source A &, s
CPUs |
Processes
- parallel_5...

paralle.

paralle.. [NN NN RSN NSNS eSS
paraiie.. | N N N N I S e e e
parale...| [JNNNNNN NN N IS W N S RN

parale.. || [NN IS

12

—ilq“‘“xu/
—< —
ﬂ%
l"_h"“\h__,..-

Benchmarks

e System: DKRZ Levante HPC (compute node, 2x AMD 7763 CPU; 128 cores in total)
* Problem: 3GiB raw data, 4MiB Chunks; (100 samples)

Average run time in s

Threads

Seconds (DEFLATE)

—8— 74
s Y ZSTD
g DEFLATE

Seconds

10000

Native
-\ 1748.560

1000 “*2Threads
| 873.736

6 Threads
291.705

100
T~
\"\;
~__ 64 Threads
l""'—27;706————————""
10
0 20 40 60 80 100
Threads

<e=> DKRZ

DEUTSCHES
KLIMARECHENZENTRUM

B DEFLATE
—— Power (DEFLATE)

—— =128 Threads

14.210

120 140

13

	Accelerating Data Compression
	Slide 2
	H5Dwrite ... 
	Current examples using multithreading
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

