
Enhancing HDF5 with Multi-Threading, Sparse Data
Storage, and Encryption

Preliminary Results and Demonstrations

Elena Pourmal elena.pourmal@lifeboat.llc
John Mainzer john.mainzer@lifeboat.llc

mailto:elena.pourmal@lifeboat.llc
mailto:john.mainzer@lifeboat.llc

2

Outline

§ Intro to Lifeboat, LLC
§ Toward multi-threaded HDF5
§ Sparse data in HDF5
§ Integrity of data in HDF5 (HDF5 encryption)

May 26 - 28, 2025 HUG 25

3

Lifeboat, LLC

§ Goal: Sustain and enhance open source HDF5
⁃ Founded in August 2021; located in Champaign, IL and Laramie, WY
⁃ www.lifeboat.llc info@lifeboat.llc

§ Funded by DOE SBIR/STTR Program
⁃ Phase I: "Toward Robust HDF5”
⁃ Phase II: “Toward multi-threaded concurrency in HDF5” (started in April 2023)
⁃ Phase II: “Supporting sparse data in HDF5” (started in April 2024)
⁃ Completed: Phase I: “Protecting the confidentiality and integrity of data stored

in HDF5” (HDF5 Encryption)

We don’t make HDF5 - we make HDF5 better

May 26 - 28, 2025 HUG 25

http://www.lifeboat.llc/
mailto:info@lifeboat.llc

4

Toward multi-threaded concurrency in HDF5
§ The goal is to allow multiple threads to enter the library without corrupting

data structures in memory and data in the HDF5 file
⁃ HDF5 was designed as a single thread library
‣ Thread safety supported via a global mutex – only one thread active in the library at a time.
‣ This constraint is imposed on VOL connectors, even if they can support multi-thread

operation.

§ Approaches to multi-threaded HDF5
‣ Retrofitting multi-thread support to an existing large, and largely un-documented code

base is a daunting task.
‣ Redesign and rewrite in contemporary language(s) that support multi-threading, e.g.,

C++ 11 or Rust.
‣ Leverage existing VOL architecture.

May 26 - 28, 2025 HUG 25

5

Approach to multi-threaded HDF5

§ Push the global mutex down to allow multiple threads of execution into
multi-threaded VOL connector:
⁃ Retrofit multi-thread support onto “service” HDF5 packages – H5E (error

reporting), H5I (index), H5P (property lists), H5CX (context), and H5VL (VOL).
§ Status:
⁃ Implemented multi-threaded VOL connector to read contiguous or chunked

data
‣ Optional: VOL connector can use internal thread pool to parallelize I/O request.
⁃ Completed conversion to multi-threaded H5E, H5I, H5CX, and H5VL.
⁃ Designed changes to multi-threaded H5S.
⁃ We are currently testing multi-threaded H5P implementation and usage of the

connector with multi-threaded HDF5 application

May 26 - 28, 2025 HUG 25

6
Bypass VOL architecture

May 26 - 28, 2025 HUG 25

HDF5 API

Multi-threaded VOL layer (H5VL)

VFD layer

HDF5 File

HDF5 native library
guarded by global mutex

Queries
native
HDF5

library for
data

location

Multi-threaded bypass VOL connector
Uses multi-threaded versions of H5I, H5E, H5CX, H5P

Bypass VOL Concept
• Query HDF5 library for the

location of raw data
• Execute raw data I/O in

parallel in multiple threads
Current functionality
• Supports reads for a

dataset with contiguous or
chunked storage and
numeric datatype; no data
filtering

• Uses internal thread pool
(optional)

Future enhancements
• Make H5S, H5T and H5FD

layers multi-thread
• Redirect I/O to the VFD

layer

7Bypass VOL connector with internal thread pool
Single threaded HDF5 application

May 26 - 28, 2025 HUG 25

Contiguous Dataset Reads Chunked Dataset Reads

64GB dataset, 256 MB chunks
Bypass VOL with the thread pool of 1 to 12 threads

8Bypass VOL connector with internal thread pool
Multi-threaded HDF5 application (1,2,4,8,and 16 threads)

May 26 - 28, 2025 HUG 25

Contiguous Dataset Reads Chunked Dataset Reads

MT application with thread safe HDF5
MT application with Bypass VOL with 4 threads in the pool
MT application with Bypass VOL with 8 threads in the pool

Sparse and Variable-Length Data Storage in HDF5
New storage paradigm for sparse and variable-length data

10New Storage Paradigm: Structured Chunk
Chunked dataset

0 may represent a value that is not-defined

Structured chunk storage for sparse data:
Locations and values of defined elements
are stored in different sections of the chunk

Section 0
Section 1

Encoded selection
66 69 72 96 99 96 102

May 26 - 28, 2025 HUG 25

Structured chunk storage for VL data:
Length of the values and values
are stored in different sections of the chunk

Section 0
Section 1

len1, len2, len3,….
string1, string2, string3,..

Chunked storage: all elements in the chunk
are stored
0 0 0 0 0 0 0 0 0 0 0 0 66 69 72 0 0 96 99 96 102

Structured chunk storage for sparse VL data:
Locations, length of each element and values
are stored in different sections of the chunk

Section 0
Section 1

Encoded selection

Section 2
len1, len2, len3,….
string1, string2, string3,..

11

Sparse Storage Implementation Status
§ Design documents are in Lifeboat GitHub (see References slide)
‣ Programming model and APIs
‣ File Format extensions
‣ Shared chunk cache
‣ Better performing chunk cache including multi-threaded implementation

‣ Improved I/O pipeline in HDF5 library
§ Current status
‣ Designed and implemented data structure in shared chunk cache
‣ Implemented new public APIs to write sparse data and internal APIs to allow data flow

through new cache
‣ Started implementation of new filter APIs
‣ Version 0 release in Summer 2025

May 26 - 28, 2025 HUG 25

Integrity of Data in HDF5
HDF5 Encryption

13

Why introduce encryption to HDF5?
§ Data integrity is not guaranteed by the HDF5 library
§ HDF5 encryption:
⁃ Preserves data integrity

‣ Encryption protects data from being stolen, changed or compromised
⁃ Assures data confidentiality and integrity during data transfer, storage and

computation
§ Design highlights:
⁃ Implemented as VFD
⁃ Supports all HDF5 features including partial I/O, compression, parallel etc., and any

desired encryption methods
§ Current prototype:
⁃ Supports any encryption method that allows computation of the maximum ciphertext

page size from the plaintext page size
⁃ Built into the HDF5 release 1.14.3
⁃ Supports AES and/or Twofish symmetrical-key encryption from the GNU gcrypt

library

May 26 - 28, 2025 HUG 25

14HDF5 Encryption Implementation

HUG 25

Generate
random

initialization
128-bit vector

(IV)
and store it in
the encryption

buffer as
plaintext.

The encryption
buffer is written
to the file at the

appropriate
offset.

Encryption
offset ensures
that the first

two pages are
skipped.

Plaintext
page

Ciphertext
page

The key and
IV/previous 128-

bit block are used
to encrypt each

block of the page;
store the

encrypted blocks
in the encryption

buffer.
4096 bytes

4112 bytes

Encryption VFD

Encrypted HDF5 file

I/O request

Page buffer VFD

Other VFDs in I/O stack

HDF5 Application § Prototype implementation
⁃ Page buffer VFD divides file address

space into plaintext pages,
translates incoming I/O request to or
from page I/O, passes data up the
stack or to encryption VFD

⁃ Encryption VFD handles offsets of
the ciphertext pages,
decrypts/encrypts pages, passes
encrypted/decrypted pages to
appropriate VFDs

⁃ See new files in the src sub-
directory: H5FDcrypt.c(h),
H5FDpb.c(h)

§ Future work
⁃ Support for parallel applications
⁃ Implement as pluggable and

configurable VFDs
⁃ Use threads to speedup encryption

15

Programming Model

§ On creation:
⁃ Set up configuration of encryption and page buffer VFDs
⁃ Modify file access property with the calls to H5Pset_fapl_crypt and
H5Pset_fapl_pb to use encryption and page buffer VFDs

⁃ Proceed with file creation and other operations as for plaintext HDF5 file
§ On open:
⁃ Provide a key
⁃ Proceed as with operations for plaintext HDF5 file

May 26 - 28, 2025 HUG 25

16

Demo

in Working/HDF-Encryption/test-git-ssh-
20240930/demo

See README in

https://github.com/LifeboatLLC/HDF5-Encryption

May 26 - 28, 2025 HUG 25

https://github.com/LifeboatLLC/HDF5-Encryption

17

References
Documentation and code on GitHub

§ Multithreaded project

https://github.com/LifeboatLLC/MT-HDF5.git
https://github.com/LifeboatLLC/hdf5_lifeboat.git

§ Sparse project
https://github.com/LifeboatLLC/SparseHDF5.git

§ Encryption project
https://github.com/LifeboatLLC/HDF5-Encryption.git

May 26 - 28, 2025 HUG 25

https://github.com/LifeboatLLC/MT-HDF5.git
https://github.com/LifeboatLLC/hdf5_lifeboat.git
https://github.com/LifeboatLLC/SparseHDF5.git
https://github.com/LifeboatLLC/HDF5-Encryption.git

18Acknowledgement
This work is supported by the U.S. Department of Energy, Office of Science under
award number:

§ DE-DE-SC0022506 for Phase II SBIR project "Toward multi-threaded
concurrency in HDF5”

§ DE-SC0023583 for Phase II SBIR project “Supporting Sparse Data in HDF5”

§ DE-SC0025856 for Phase I SBIR project "Toward Robust HDF5”

§ DE-SC0024823 for Phase I SBIR project “Protecting the confidentiality and
integrity of data stored in HDF5”

§ The HDF Group developers Jordan Henderson, Neil Fortner, Vailin Choi, and
Matt Larson

§ Lifeboat engineers Ray Lu, Kyle Lofthus, Dr. Clay Carper

May 26 - 28, 2025 HUG 25

19

Thank you!

Questions?

May 26 - 28, 2025 HUG 25

