
Using a HDF5 file as Zarr v3 
Shard
Mark Kittisopikul, Ph.D.
Software Engineer III
Scientific Computing Software
Janelia Research Campus
Howard Hughes Medical Institute

HDF5 User Group, May 26, 2025



Why combine multiple file formats?

● Avoid data duplication
○ Large datasets could be 

terabytes, petabytes, or 
exabytes in scale

○ We cannot afford to have 
multiple copies

● Make it easier for users to read 
using their favorite APIs

○ Users may have restricted 
access to one API but still need 
to access the same data

https://xkcd.com/927



Zarr v3 is a cloud optimized chunk-based 
hierarchical array storage specification

● Metadata are stored as JSON zarr.json files for 
each group and array

● Chunks are stored as individual keys (files) in 
key-value store (a filesystem)

○ On a file system, chunks are individual files.

● For small chunks (e.g. 32x32x32) in a large array 
(e.g. 4096x4096x4096), this could result in 
millions of files

○ Efficient access requires optimized file systems

https://zarr-specs.readthedocs.io/en/latest/v3/core/index.html#

https://zarr-specs.readthedocs.io/en/latest/v3/core/index.html#


A Zarr v3 shard is a codec to subdivide a single 
chunk into smaller inner chunks

● Many chunks can exist in a single file.

● Therefore, we can reduce the number of files 

required. Example:
○ Array size: 4096 x 4096 x 4096

○ Shard size: 1024 x 1024 x 1024

○ Chunk size: 32 x 32 x 32

● Inner chunks can be individual compressed

https://zarr-specs.readthedocs.io/en/latest/v3/codecs/sharding-indexed/index.html

https://zarr-specs.readthedocs.io/en/latest/v3/codecs/sharding-indexed/index.html


A Zarr v3 shard chunk index exists at either the 
beginning or end of the shard

● The size of the chunk index can be calculated directly from information in the zarr.json file
○ nChunks x 16 bytes + 4 bytes

○ The 4-byte checksum of the chunk index is calculated using CRC32c

○ Retrievable using a single HTTP GET request with a byte-range header.
CRC32c



The Zarr v3 shard index is similar to a
HDF5 Fixed Array Data Block, differ by 14 or 18 bytes

64-bits

32-bits

32-bits

HDF5

Zarr

Jenkins

14
bytes

CRC32c



Formatting a HDF5 File as a Zarr v3 shard?

● We need to place the Zarr v3 shard index at the beginning or end of the file
● Options

○ A: Put the Zarr v3 shard index in the HDF5 User Block at the beginning of the file
○ B: Put the Zarr v3 shard index into a dataset at the end of the file
○ C: Relocate the HDF5 Fixed Array Data Block to the end of the file

HDF5 User Block:
Zarr v3 shard index

HDF5 Metadata

Shared data chunks

HDF5 Metadata

Shared data chunks

2nd HDF5 Dataset as 
Zarr v3 shard index

HDF5 Metadata

Shared data chunks

HDF5 FADB as a
Zarr v3 shard index ?

Option A: Option B: Option C:
CRC32c
or
Jenkins
Checksum?



Zarr v3 sharding is similar a HDF5 Virtual Dataset

● Virtual datasets are a HDF5 feature that allows part of a 

dataset to exist as a dataset in another file (~Zarr v3 shard)

● A Zarr v3 shard is analogous to a file with a single chunked 

source dataset



Combined Zarr Array as a HDF5 Virtual Dataset

HDF5 Metadata

Shared data 
chunks

Zarr v3 shard 
index

HDF5 Metadata

Shared data 
chunks

Zarr v3 shard 
index

HDF5 Metadata

Shared data 
chunks

Zarr v3 shard 
index

HDF5 Metadata

Shared data 
chunks

Zarr v3 shard 
index

c/0/0

c/1/0

c/0/1

c/1/1

zarr.hdf5

zarr.json

Index files:

c/0/0 c/0/1

c/1/0 c/1/1



Combined Zarr Array as a HDF5 Virtual Dataset

HDF5 Metadata

Shared data 
chunks

Zarr v3 shard 
index

HDF5 Metadata

Shared data 
chunks

Zarr v3 shard 
index

HDF5 Metadata

Shared data 
chunks

Zarr v3 shard 
index

HDF5 Metadata

Shared data 
chunks

Zarr v3 shard 
index

c/0/0

c/1/0

c/0/1

c/1/1

zarr.hdf5

zarr.json

Index files:

c/0/0 c/0/1

c/1/0 c/1/1



Combined Zarr Array as a HDF5 Virtual Dataset

HDF5 Metadata

Shared data 
chunks

Zarr v3 shard 
index

HDF5 Metadata

Shared data 
chunks

Zarr v3 shard 
index

HDF5 Metadata

Shared data 
chunks

Zarr v3 shard 
index

HDF5 Metadata

Shared data 
chunks

Zarr v3 shard 
index

c/0/0

c/1/0

c/0/1

c/1/1

zarr.hdf5

zarr.json

Index files:

c/0/0 c/0/1

c/1/0 c/1/1



Summary

● Zarr v3 shards partition chunks into small inner chunks.
● The resulting arrangement is similar to a HDF5 Virtual Dataset.
● A “file” could be both a valid HDF5 file and a Zarr v3 shard

○ The Zarr v3 shard index could exist in a HDF5 file either as
■ A user block at the beginning of the file OR
■ An extra contiguous dataset at the end of the file

○ A merged FADB and Zarr v3 shard index would require alignment of 32-bit checksums
■ HDF5 adopts CRC32c as a checksum
■ Zarr adopts Jenkin’s lookup3 as a codec

● Alternative: A Zarr v3 virtual file driver for HDF5?
● Bonus (time permitting): Combining TIFF, HDF5, and Zarr v3

○ Jupyter notebook demonstration



Bonus topic: Combining TIFF, 
HDF5, and Zarr v3



Could we combine TIFF, HDF5, and Zarr?



~KBs

Can microscopists implement simply and efficiently?



Demo: Reading the same file via 
distinct packages

I’ve created a single file “demo.hdf5.zarr.tiff” that can be read by 

distinct Python packages:

● h5py (HDF5)

● libtiff (TIFF)

● tensorstore (Zarr v3)

https://github.com/mkitti/simple_image_formats

https://github.com/mkitti/simple_image_formats


We can modify the data with h5py (via HDF5) …



… Then read the modified data 
from all three libraries as a TIFF, 
HDF5 file, or a Zarr v3 shards

We can make the latest standards cooperate rather than compete.

Is this the best approach? Should we address this via file systems 

(FUSE), APIs (N5), or services?



Implementation details…

● HDF5 metadata can be consolidated by using a large enough meta_block_size

● HDF5 chunk information (offset and nbytes) can be extracted efficiently using H5chunk_iter


