
Page 1

DOOCS-over-ZeroMQ

New network protocol for DOOCS: ZeroMQ

• To replace 1980s Sun RPC/ONC RPC (in the long term)

• To add support for subscriptions

Opportunity: Also replace XDR serializer

• Just as old (~1984)

• Supports only C data types, manual memory management

Many possibilities

• Better interface, cleaner code

• User-defined structured data, see pvAccess in EPICS ≥ 7

• Lower overhead (less copying, less byte-swapping)

• Asynchronous get() and set() operations

• “Wildcard operations” that return the actual data types of

the properties

• Message signing

• Compression

A new foundation for a 30-year-old control system

| DOOCS-over-ZeroMQ | Lars Fröhlich | 2025-03-04

✓

✓
(✓)

✓

✓

Page 2

ZeroMQ in DOOCS Servers

Synchronous Calls

SunRPC → ZMQ REQ/REP

Publish-Subscribe

ZMQ XPUB/SUB

Serialization

XDR → Structured data & custom serializer

| DOOCS-over-ZeroMQ | Lars Fröhlich | 2025-03-04

… for synchronous and pub-sub communication

Modern DOOCS servers open 3

ports for SunRPC, ZMQ REP,

ZMQ XPUB.

Communication via SunRPC

still uses XDR.

Communication via ZMQ uses a

custom serialization format for

structured data.

Page 3

doocs::Structure

A Structure …

• consists of an arbitrary number of Fields.

A Field …

• has a name,

• a type,

• a length N,

• and N data elements of that type.

Data types:

boolean, int8, uint8, int16, uint16, int32, uint32,

int64, uint64, float32, float64, timestamp, event_id,

string, string_view, field

Structures are self-describing and can be serialized

and deserialized.

A data type for structured data

| DOOCS-over-ZeroMQ | Lars Fröhlich | 2025-03-04

Field→

Field→

Field→

Field→

Field→

Field→

Field→

Field→

Field→

Field→

Page 4

doocs::Structure

| DOOCS-over-ZeroMQ | Lars Fröhlich | 2025-03-04

… in source code

Page 5

Synchronous Calls

ZMQ: REQ–REP (request–reply)

• One-to-one

• Bidirectional

| DOOCS-over-ZeroMQ | Lars Fröhlich | 2025-03-04

Same Model as in Sun RPC/ONC RPC

DOOCS “monitors” do this

periodically in the background

Server

Client

F/D/L1/P1

😊

REQ

REP

get F/D/L1/P1

😄

Page 6

Publish-Subscribe: The Idea

| DOOCS-over-ZeroMQ | Lars Fröhlich | 2025-03-04

Avoid the Back-Channel

by Ssolbergj via Wikimedia Commons, Creative

Commons Attribution 3.0 Unported license

Publisher

Subscriber Subscriber Subscriber

ZMQ PUB-SUB

• One-to-many (broadcast-like)

• Strictly unidirectional

• Publisher does not know

subscribers or if there are any

ZMQ XPUB-SUB

• One-to-many

• Mostly unidirectional

• Subscriptions & unsubscriptions

are reported to publisher

• Publisher knows number of

subscribers

XPUB

SUB SUB SUB

https://en.wikipedia.org/wiki/en:Creative_Commons
https://creativecommons.org/licenses/by/3.0/deed.en

Page 7

Publish-Subscribe with DOOCS-over-ZeroMQ

Subscribers call EqCall::subscribe()

on the desired DOOCS address.

Each call of D_fct::publish() on the

publisher invokes a callback on each

subscriber.

Properties without subscribers

are never published.

| DOOCS-over-ZeroMQ | Lars Fröhlich | 2025-03-04

subscribe() and publish()

The publisher determines when and

how often properties are published.Publisher

subscribe(“F/D/L1/P1”, callback)
subscribe(“F/D/L1/P1”, callback1)

subscribe(“F/D/L2/P2”, callback2)
subscribe(“F/D/L2/P2”, callback)

F/D/L1/P1

😊

F/D/L2/P2

😎

publish()

Page 8

Future Idea: Asynchronous Calls

| DOOCS-over-ZeroMQ | Lars Fröhlich | 2025-03-04

Why Wait?

Server

Client

DEALER

ROUTER

get F/D/L1/P1 get F/D/L2/P2
F/D/L1/P1

😊

F/D/L2/P2

😉

future1 = get_async(“F/D/L1/P1”);

future2 = get_async(“F/D/L2/P2”);

if (future1.ready())

result1 = future1.get();

result2 = future2.get();

