
Current setup at EuXFEL

• One primary node and one standby with asynchronous streaming replication.

• Postgresql with timescale extension

• Main reasons for choosing postgresql/timescale

◦ open source

◦ many data types

◦ different purposes of the database (archive, event archive, metadata)

◦ scalability

◦ stablity

◦ self-hosted system required

◦ SQL

◦ High ingestion performance (intensive tests)

Database design

• Data and metadata model is working so far, the database is operable and can store most DOOCS data

types.

• Currently working un GUI tools and refinement of metadata

High Availability (HA)

• Replication as such is fairly easy to set up in postgresql.

◦ Different models supported. We use asynchronous physical replication via slots.

• Additional HA Features are not parts of postgresql:

◦ monitoring of database nodes

◦ automatic failover from primary to standby in case of an error

◦ automatic failback (failed master comes back up, needs to rewind and synchronize and added as

new standby.

◦ STONITH if failback is not working (disable previous primary)

◦ IP switching

◦ connection pooling

◦ load balancing (read access can be done by replica)

• We tested different HA solution to manage failover/failback situations for postgresql.

◦ pgpool (fairly complete but unreliable), pg_auto_failover (simple but not yet ready), repmgr (simple

but limited)

◦ repmgr + pgpool chosen for one replicated node

▪ Possibly not the right solution for bigger clusters

◦ Maybe switch to patroni or pgedge later on

Backup

• Made experiments with pg_backrest

• Rather slow for aprrox. 100TB of data

• Overall concept not yet clear

• Additional server or disk space needed

• pg_backrest may be the first solution to start with, possibly compare with barman

Scalability

• Timescale stopped multinote support



• Concept for horizontal scalability needed

• Concept for vertical scalability needed

• Not so relevant for EuXFEL, but certainly for PETRA IV.

ETL Tool

• How do DOOCS data get into the database?

• DOOCS RPC much too slow.

• Different ideas have been developed

• The new Asynchronous DOOCS / ZMQ seems promising

• ETL tool subscribes DOOCS channels and upload them chunk-wise

• Specifications of what to extract is currently being moved from JSON files to the database.

• Things to work on:

◦ Filtering

◦ Timestamps

◦ Specification when channels are updated / initialized at start / updated at regular intervals.

◦ Error handling (how to handle connection error, invalid data)

• Drawback:

◦ Pub/Sub is CPU intensive

◦ Special servers needed as data hubs


