Current setup at EUXFEL

¢ One primary node and one standby with asynchronous streaming replication.
e Postgresql with timescale extension
¢ Main reasons for choosing postgresqgl/timescale
o open source
o many data types
different purposes of the database (archive, event archive, metadata)
scalability
stablity
self-hosted system required
SQL
High ingestion performance (intensive tests)

o

@]

o

o

[e]

o

Database design

¢ Data and metadata model is working so far, the database is operable and can store most DOOCS data
types.
e Currently working un GUI tools and refinement of metadata

High Availability (HA)

¢ Replication as such is fairly easy to set up in postgresq|.
o Different models supported. We use asynchronous physical replication via slots.
¢ Additional HA Features are not parts of postgresql:
o monitoring of database nodes
automatic failover from primary to standby in case of an error
automatic failback (failed master comes back up, needs to rewind and synchronize and added as
new standby.
STONITH if failback is not working (disable previous primary)
IP switching
o connection pooling
o load balancing (read access can be done by replica)
¢ We tested different HA solution to manage failover/failback situations for postgresq|.
o pgpool (fairly complete but unreliable), pg_auto_failover (simple but not yet ready), repmgr (simple
but limited)
o repmgr + pgpool chosen for one replicated node
= Possibly not the right solution for bigger clusters
o Maybe switch to patroni or pgedge later on

o

o

O

o

Backup

e Made experiments with pg_backrest

Rather slow for aprrox. 100TB of data

Overall concept not yet clear

Additional server or disk space needed

pg_backrest may be the first solution to start with, possibly compare with barman

Scalability

e Timescale stopped multinote support



¢ Concept for horizontal scalability needed
e Concept for vertical scalability needed
¢ Not so relevant for EUXFEL, but certainly for PETRA IV.

ETL Tool

How do DOOCS data get into the database?
DOOCS RPC much too slow.
Different ideas have been developed
The new Asynchronous DOOCS / ZMQ seems promising
ETL tool subscribes DOOCS channels and upload them chunk-wise
Specifications of what to extract is currently being moved from JSON files to the database.
Things to work on:
o Filtering
o Timestamps
o Specification when channels are updated / initialized at start / updated at regular intervals.
o Error handling (how to handle connection error, invalid data)
Drawback:
o Pub/Sub is CPU intensive
o Special servers needed as data hubs



