
Container Registry 2.0
Implementation of new CI/CD framework for container images maintenance

Prateek Gupta
Thüringer Landessternwarte (TLS), Tautenburg

2

What is container image ?

Container images are snapshot of an environment
which encapsulate;
– system libraries
– system tools
– platform settings
– files and other components

that required for an application to run

● Offers lightweight compute environment in comparison to Virtual machines

Base OS Layer
OS-Level

Dependencies

Code-Level
Dependencies

Application
(Code)

3

Significance of container images in PUNCH

● Users are from variety of research areas : particle, astro-, astroparticle,
hadron and nuclear physics
– different data-set and different tools and techniques
– installing supporting libraries and tools on each remotely accessible compute resources !!

--- not feasible

● Maintain different containers for different use-cases/projects

LINC Simulation LQCD h4lepton

4

What next ?

Once container images created;
– need to save somewhere !!!
– mechanism for sharing and accessing them !!!

5

What next ? Container registry→ → →

Once container images created;
– need to save somewhere !!!
– mechanism for sharing and accessing them !!!

That’s where a container registry comes in

6

What is Container Registry ?

A container registry is a service that host (stores,
manages) and distribute application or container images
– Providing an efficient, centralized resource for container image

discovery, distribution, and deployment

7

Container Registry architecture

Container registry is a single or collection of repositories –
used to store and access container images

linc:latest linc:1.0.1 linc:1.1.1 linc:beta

simulation:latest h4lepton:latest h4lepton:20250310

Simulation_Repo

LINC_Repo

h4lepton_Repo
Container Registry

Inside an image repository, there
can be one or more images;

- with different tags or versioning

8

Container Registry and CI/CD pipeline

In practical use-case, with CI/CD pipeline, one can achieve a scalable development
of containers or applications on container registry

CI/CD continuous integration and continuous development pipelines→
Performing:

● A series of steps in order to deliver a new version of container images
● changes to code(s) are automatically tested and pushed out for delivery and

deployment

9

Container Registry 1.0

● Using GitLab container registry; a secure
and private registry for docker container
images

● All containers (and Dockerfiles) in one
repository; “Container Stacks”

● Any Change(s) to the files in “Container
Stacks” triggers the CI/CD pipeline to
update the container registry

● Create docker containers for all supporting
projects/experiments in one go.

LINC/Dockerfile

LQCD/Dockerfile

simulation/Dockerfile

h4leptons/Dockerfile

.gitlab-ci.yml

Container Stacks

10

Container Registry 1.0

● Limitations:
– Even if there is a change updated for a single docker container;

it triggers the CI/CD for all
– Hence, no control on versioning the docker containers
– Versioning is based on ‘Commit_SHA’ and ‘Date’
– Create same copies of container images if CI/CD triggered because

of other project Dockerfile modification; with new “date” tag
– Even a change in README file will triggers the CI/CD pipeline

11

Container Registry 2.0

● Separate Repository for each project
● Master CI/CD pipeline; again in separate repository
● Master CI/CD linked to individual projects repository

LINC_Repo
.gitlab-ci.yml

simulation_Repo
.gitlab-ci.yml

LQCD_Repo
.gitlab-ci.yml

Master_CICD_repo
.gitlab-ci.yml

- supporting scripts

h4leptons_Repo
.gitlab-ci.yml

12

What Master CI/CD can do?

● Only the container image corresponds to the modified project repository will
be updated; rest will remain unaffected

● Update/modification to the README file will not trigger the CI/CD
● Enables versioning:

– Semantic versioning : MAJOR . Minor . Patch
● Versioning decision based on commit message: matches the regular expression; accordingly update

the version
● If commit message doesn’t match the key-words, no increment in sementic version

– Tag them based on ‘date’ as well
– A version with latest tag always created once the CI/CD tiggered

13

Summary

● One CI/CD for all project; preserves previous feature
● Versioning will be easier as each container images reserve there own

repository/space
● Versioning style can be flexible: developer's suggestions required
● Limitation of Container Registry 2.0

– Need a separate repository for each project

14

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

