VECTOR-BOSON FUSION AT MUON COLLIDERS: ELECTROWEAK FACTORISATION AND PDFS

Krzysztof Mękała

DESY, Hamburg, Germany

Faculty of Physics, University of Warsaw, Poland

based on work with B. Dahlén, M. Loeschner, J. Reuter, P. Stylianou & T. Han, Y. Ma, J. Reuter, K. Xie

FH Particle Physics Discussion, DESY, 14.03.2025

MUON COLLIDER PHYSICS PROGRAMME

MUON COLLIDER PHYSICS PROGRAMME

ENERGY-FRONTIER COLLIDERS

Muons can be accelerated to energies comparable to those of protons:

- As they are point-like particles, the *entire* nominal centre-of-mass energy is available for interactions.
- For protons, only a part of the energy is available since it is distributed statistically among partons.

[1901.06150]

ANNIHILATION & VECTOR-BOSON FUSION

- VBF topologies are contaminated by annihilation topologies, as neutrinos cannot be observed.
- VBF is suppressed by additional powers of couplings but at the same time, enhanced by longitudinal vector bosons and soft/collinear logs.

ANNIHILATION & VECTOR-BOSON FUSION

• For SM processes well above treshold:

$$\frac{\sigma_{\rm VBF}^{\rm SM}}{\sigma_{\rm ann}^{\rm SM}} \propto \alpha_W^2 \frac{s}{m_V^2} \log^3 \frac{s}{m_V^2}$$

• Similarly, for BSM processes:

$$\frac{\sigma_{\rm VBF}^{\rm BSM}}{\sigma_{\rm ann}^{\rm BSM}} \propto \alpha_W^2 \frac{s}{m_X^2} \log^2 \frac{s}{m_V^2} \log \frac{s}{m_X^2}$$

VBF subprocesses grow with *s*!

[2005.10289]

ANNIHILATION & VECTOR-BOSON FUSION

ELECTROWEAK FACTORISATION: EQUIVALENT VECTOR-BOSON APPROXIMATION

• Let us consider a boson-initiated process, for example:

 Ideally, we would like to factorise the process into some universal structure function describing the emission and a hard-process Matrix Element.

EVA DERIVATION In general, full ME is given by: $\mathcal{M}_{\text{full}} = \mathcal{M}^{\mu}(f_A \to V f'_A) \Delta^V_{\mu\nu}(q) \mathcal{M}^{\nu}(f_B V \to X)$

In the weak-boson case, the emission ME is:

$$\mathcal{M}^{\mu}(f_{\lambda} \to f_{\lambda'}' V_{\lambda_{V}}) = \bar{u}(p', \lambda') \varepsilon_{\mu}^{*}(q, \lambda_{V}) \gamma^{\mu}(g_{V} - g_{A}\gamma^{5}) u(p, \lambda)$$

The propagator term reads:

$$\Delta_{\mu\nu}^{V}(q) = \frac{i\sum_{\lambda_{V}}\varepsilon_{\mu}^{*}(q,\lambda_{V})\varepsilon_{\nu}(q,\lambda_{V})}{q^{2} - M_{V}^{2}}$$

EVA DERIVATION II

$$f_{A} \xrightarrow{p} f'_{A}$$

$$\mathrm{d}\sigma = \frac{x}{2s} \sum_{\lambda_V} |\overline{\mathcal{M}}(f_A \to f'_A V_{\lambda_V})|^2 \frac{1}{(q^2 - M_V^2)^2} |\overline{\mathcal{M}}(f_B V_{\lambda_V} \to X)|^2 \,\mathrm{d}PS$$

EVA DERIVATION II

The differential cross section is given by:

$$\mathrm{d}\sigma = \frac{x}{2s} \sum_{\lambda_V} |\overline{\mathcal{M}}(f_A \to f'_A V_{\lambda_V})|^2 \frac{1}{(q^2 - M_V^2)^2} |\overline{\mathcal{M}}(f_B V_{\lambda_V} \to X)|^2 \,\mathrm{d}PS$$

boost of the splitting to the hard-process frame phase-space element

p'

p

 f_A

 f_B

flux factor

 X, p_X

EVA DERIVATION III

Kinematics of the process can be expressed in terms of:

- *E* beam energy,
- x fraction of the energy carried by the boson,
- p_T transverse momentum of the radiated particle.

Assuming $p_T/E \ll 1$ (collinear approximation), one can integrate over p_T and obtain:

$$\sigma(f_A f_B \to f'_A X) = \sum_{\lambda_V} \int_{x_{min}}^1 \mathrm{d}x F_{\lambda_V}(x, p_T^{max}) \times \hat{\sigma}(f_B V_{\lambda_V} \to X)$$

EVA STRUCTURE FUNCTIONS

$$F_{+}(x) = \frac{1}{16\pi^{2}} \frac{(c_{v} - c_{a})^{2} + (c_{v} + c_{a})^{2} \bar{x}^{2}}{x} \left[\ln\left(\frac{p_{T,\max}^{2} + \bar{x}M^{2}}{\bar{x}M^{2}}\right) - \frac{p_{T,\max}^{2}}{p_{T,\max}^{2} + \bar{x}M^{2}} \right]$$

$$F_{-}(x) = \frac{1}{16\pi^{2}} \frac{(c_{v} + c_{a})^{2} + (c_{v} - c_{a})^{2} \bar{x}^{2}}{x} \left[\ln\left(\frac{p_{T,\max}^{2} + \bar{x}M^{2}}{\bar{x}M^{2}}\right) - \frac{p_{T,\max}^{2}}{p_{T,\max}^{2} + \bar{x}M^{2}} \right]$$

$$F_{0}(x) = \frac{c_{v}^{2} + c_{a}^{2}}{8\pi^{2}} \frac{2\bar{x}}{x} \frac{p_{T,\max}^{2} + \bar{x}M^{2}}{p_{T,\max}^{2} + \bar{x}M^{2}}$$

*- for validation purposes

EVA VS. FULL PROCESS

*- for validation purposes

EVA MOTIVATION

- 1. Faster computation $(2 \rightarrow 2 \text{ instead of } 2 \rightarrow 4, ...)$ crucial in the past, nowadays of less importance
- 2. Factorisation as an interesting concept on its own *theoretical studies: validation of the approximation*
- 3. Transition to the EW PDF picture

path to full SM spectrum as partons

PARTON DISTRIBUTION FUNCTIONS IN QCD

EW RADIATION AT MUON COLLIDERS

- At high energies, muons emit multiple EW bosons: the coupling suppression is compensated by logs of the ratios of scales between the collision energy and particle masses.
- The radiation is an interesting phenomenon on its own (precision studies, mono-X searches, ...), but can also dramatically change the picture of muon collisions.
- The emitted bosons can initiate a hard collision or decay. The products of the decay can initiate a hard collision or decay. The products of this decay can also initiate a hard collision or decay further...

PARTON DISTRIBUTION FUNCTIONS IN SM

- This leads to the PDF-like picture of a muon: large logs of scales have to be resummed for reliable predictions.
- The full EW DGLAP equation has to be employed:

$$\frac{\mathrm{d}f_i}{\mathrm{d}\ln Q^2} = \sum_I \frac{\alpha_I}{2\pi} \sum_j P_{i,j}^I \otimes f_j$$

 At the EW scale and above, all electroweak states in the unbroken SM are dynamically activated. As the SM is a chiral theory, parton polarisation emerges naturally.

FULL PARTICLE SPECTRUM IN EW PDFS

. . .

				d_L	dL	1	-				
				d_R	dR	1	+				
				$ u_L $	uL	2	-				
e_L	eL	11	-	u_R	uR	2	+				_
e_R	\mathbf{eR}	11	+	s_L	sL	3	-	$\begin{vmatrix} g_+ \\ g \end{vmatrix}$	gp	21	+
$ u_e $	nue	12	-	s_R	\mathbf{sR}	3	+	$ g_{-}$	gm	21	-
μ_L	muL	13	-	c_L	cL	4	-	$ \gamma_+$	gap	22	+
μ_R	muR	13	+	c_R	\mathbf{cR}	4	+	$ \gamma_{-}$	gam	22	-
ν_{μ}	numu	14	-	b_L	bL	5	-	$\begin{vmatrix} z_+ \\ z \end{vmatrix}$	Zp	23	+
$ au_L$	taL	15	-	b_R	\mathbf{bR}	5	+		Zm	23	-
$ au_R$	taR	15	+	t_L	tL	6	-	Z_L	ZL	23	0
ν_{τ}	nuta	16	-	t_R	tR	6	+	$ Z/\gamma_+$	Zgap	2223	+
\bar{e}_L	eLb	-11	+	\bar{d}_L	dLb	-1	+	$ Z/\gamma_{-} $	Zgam	2223	-
\bar{e}_R	\mathbf{eRb}	-11	_	\bar{d}_R	dRb	-1	_	$ W_+^+$	Wpp	24	+
$\bar{\nu}_{e}$	nueb	-12	+	\bar{u}_L	uLb	-2	+	W_{-}^{+}	Wpm	24	-
Ū,	muLb	-13	+	\bar{u}_{P}	uRb	-2	_	$ W_L^+$	WpL	24	0
	muRb	-13			sLb	-3	+	$ W_{+}^{-}$	Wmp	-24	+
$\overline{\nu}_{n}$	numub	-14	+		sBb	-3	_	$ W_{-}^{-}$	Wmm	-24	-
νµ ₹r	taLb	-15			cLb	_4	_L_	$ W_L^-$	WmL	-24	0
	taBb	15			cBb	-4		$\mid h$	\mathbf{h}	25	0
	nutah	-16	_	\overline{b}_{R}	bLb	-4	_	h/Z_L	hZL	2523	0
ν_{τ}	nutab	-10	Ŧ	\overline{b}_{L}	hPh	-0	Τ.				
				$\begin{bmatrix} v_R \\ \bar{\tau}_{-} \end{bmatrix}$	t k	-0	-				
				$\left \begin{array}{c} \iota_L \\ \overline{I} \end{array} \right $	tLD +D1	-0	+				
				t_R	tRb	-0	-				

[2303.16964]

PARTON DISTRIBUTION FUNCTIONS FOR MUONS

[2007.14300]

CROSS SECTION – ANNIHILATION VS. VBF

[2007.14300]

FULL ME VS. EVA VS. EWPDF

EW PDF MOTIVATION

- 1. Faster computation (2 \rightarrow 2 instead of 2 \rightarrow 4, ...)
- 2. Factorisation as an interesting concept on its own
- 3. Convenient way to look for specific processes, e.g. BSM
- 4. The so far most promising way to automate precision resummation of threshold logs for 10-TeV+ colliders

CONCLUSIONS & OUTLOOK

- The collinear emission of nearly on-shell massive vector bosons makes any multi-TeV machine a **vector-boson collider**!
- EVA and EW PDFs offer an interesting framework to study physics in the collinear approximation.
- Many new results expected soon...

