Measurement of differential $\gamma\gamma \to \tau\tau$ cross sections and constraints on τ -lepton electromagnetic moments

DPG Spring Meeting, Göttingen 2025

Weronika Stanek-Maslouska 1 April 2025

Outline

- Motivation and analysis strategy
- Background modelling
- Detector-level distributions
- Unfolding procedure
- Differential cross sections
- Extraction of tau anomalous magnetic moment

Motivation

Electromagnetic moments of τ -lepton

Anomalous magnetic moment

- Defines how fermions interacts with magnetic field
- intrinsic magnetic moment:

$$\vec{\mu} = g \frac{q}{2m} \vec{s}$$

where:

- Anomalous magnetic moment: $a = \frac{1}{2} (g 2)$
- a_e, a_μ are precisely measured observables, a_τ is much less constrained
- SM predicts atau close to 0: significantly smaller than the currently available experimental bounds
- Measuring atau with improved precision can be sensitive to BSM

Analysis strategy

Overview of the idea

Ultraperipheral heavy-ion collisions (UPC):

- UPC occurs when the impact parameter is larger than twice the radius of the ions (b>2R)
- photon-photon interactions can be observed opening completely new research opportunities.

Analysis strategy

Overview of the idea

Advantages of UPC Pb+Pb over pp collisions

- huge photon fluxes \rightarrow Z⁴ cross-section enhancement (with Z = 82 for Pb)
- ~ no hadronic pile-up → exclusivity selections
- low p_T thresholds in trigger and offline reconstruction (access low mass region)

The presence of the $\gamma\gamma\tau$ vertex provides sensitivity to the electromagnetic couplings of the τ -lepton

Analysis strategy

Overview of the idea

- Full LHC Run2 PbPb data (1.93 nb⁻¹ of data) recorded by ATLAS
- Single muon based triggers
- Signal candidates are selected using muonic tau decays and categorised using electrons or low-pT tracks:
 - 1M1T: 1 muon + 1 track
 - 1M3T: 1 muon + 3 tracks
 - 1M1E: 1 muon + 1 electron
- Measurement of differential cross sections: unfolding:
 - correct for detector effects →enables theorists to reinterpret our results for other models
- Detector-level & truth-level extractions of tau electromagnetic moments

DESY.

Background modelling

Exclusive dimuon production $\gamma\gamma{\to}\mu\mu$

Estimated using MC

Diffractive photonuclear particle production

Estimated using fully data-driven method

Background modelling

Detector-level distributions in dedicated control regions

Dimuon background

Photonuclear background

good modelling for each of these backgrounds

Detector-level distributions

- clear signal with very small background contribution
- good agreement between data and prediction

Truth objects and fiducial regions definition

Property	Signal
Truth Mu	ons
Kinematic	$p_{\mathrm{T}} > 4 \mathrm{~GeV}, \eta < 2.5$
Truth Elec	ctrons
Kinematic	$p_{\mathrm{T}} > 4 \mathrm{~GeV}, \eta < 2.5$
Truth had	rons and truth charged leptons with $p_{ m T}^{\ell} < 4~{ m GeV}$
Kinematic	$p_{\mathrm{T}} > 100$ MeV, $ \eta < 2.5$

 definition of "tracks" is chosen to stay as close as possible to the SR definitions

Observable $E_{\text{ZDC}}^{A,C}$	Preselection < 1 TeV	1	
Region	1M1T FR	1M3T FR	1M1E FF
$N_{\mu}^{ m sig}$	= 1	= 1	= 1
$N_e^{ m sig}$	=0	=0	= 1
$N_{\mathrm{trk}}\Delta R > 0.1 \; \mathrm{from} \; \mu^{\mathrm{sig}}$	=1	=3	_
$N_{\mathrm{trk}}\Delta R > 0.1 \text{ from } \ell^{\mathrm{sig}}$	_	_	=0
\sum charge	=0	=0	=0
$p_{ m T}^{(\mu,{ m trk})}$	> 1 GeV	_	_
$m_{\rm trles}$		$< 1.7~{ m GeV}$	_
$A_{\phi}^{\mu, \text{trk(s)}}$	< 0.4	< 0.2	_

• unfold seven variables in each region

We use Iterative Bayesian Unfolding (IBU).

Statistical uncertainties and correlations

- analysis limited by data statistics
- determine the statistical uncertainty on the unfolded cross sections using bootstrapping

Systematic uncertainties

- systematic uncertainties can affect one/some/all of: background, signal at reconstruction-level or truth-level
- depending on which of these is affected, appropriately varied inputs are used in the unfolding
- Impact of the uncertainties: statistical uncertainties for every bin are larger that systematic ones

Cross section at truth level

- 2015 and 2018 inputs are combined before unfolding
- The cross section per-bin is estimated by dividing the number of events at truth level, by the bin width times the central value of the 2015+2018 luminosity
- good agreement between the truth and the unfolded distribution (given the uncertainties)

BSM signal prediction

a, and d, signal parametrization

- same parametrization of $\gamma\gamma\tau$ vertex as in the previous ATLAS analysis
- photon-lepton vertex function depends on the momentum transfer q:

$$i\Gamma_{\mu}^{(\gamma\tau\tau)}(q) = -ie\left[\gamma_{\mu}F_{1}(q^{2}) + \frac{i}{2m_{\tau}}\sigma_{\mu\nu}q^{\nu}F_{2}(q^{2}) + \frac{1}{2m_{\tau}}\gamma^{5}\sigma_{\mu\nu}q^{\nu}F_{3}(q^{2})\right]$$

• $F_1(q^2)$ and $F_2(q^2)$ are the Dirac and Pauli form factors, $F_3(q^2)$ is the electric dipole form factor

At $q^2 \rightarrow 0$ (fulfilled in Pb+Pb collisions):

$$F_1(0) = 1$$
 $F_2(0) = a_{\tau}$ $F_3(0) = d_{\tau} \frac{2m_{\tau}}{e}$

BSM predictions obtained through reweighting procedure from SM samples

Fit setup

atau fit

Detector-level fit

- use detector-level distribution of muon pT
- TRExFitter with Poisson likelihood model
- Negative Log Likelihood minimisation finds best fit and 68%CL limits

Fitting results

Asimov atau fit

 negative log-likelihood curves as a function of atau

 two local minima where the one at negative atau is stronger and thus determines best-fit value

Comparison with other measurements

ATLAS Pb+Pb (2023):

68% [-0.050,-0.029]

95% [-0.057,0.024]

CMS p+p (2024):

95% ~ [-0.0042,0.0062]

CMS Pb+Pb (PAS, 2024):

68% ~ [-0.045,-0.015]

95% ~ [-0.055,+0.018]

This measurement:

68% ~ [-0.058, -0.026]

95% ~ [-0.052, -0.037]

Summary

Full LHC Run2 Pb+Pb data analysis aiming for first differential cross section measurement of $\gamma\gamma \to \tau\tau$ and extraction of electromagnetic moments of the tau-lepton:

- 3 signal regions + dimuon control region
- Background modelling completed
- Unfolding procedure to obtain differential cross sections fully in place
- 7 unfolded observables in each signal region
- Statistical uncertainties in the data propagated through bootstrapping -> Provides full statistical correlations also between observables
- Extraction of atau from muon pT: most stringent constraints to date in Pb+Pb collisions
- We plan to perform global fits to the unfolded cross-sections and additionally extract dtau.

Thank you!

Backup

Motivation

Electromagnetic moments of τ -lepton

Electric dipole moment

- Defines how fermions interacts with electric field
- The EDM (dtau) of a particle is defined through the interaction of its spin **S** with an external electric field **E**:

$$H_{ ext{EDM}} = -d_{ au} \mathbf{S} \cdot \mathbf{E}$$

- SM predicts dtau $< \sim 10^{-37}$: currently available experimental bounds are at the level of 10^{-17}
- Measuring dtau is interesting because it provides a direct test of **CP violation** in the lepton sector: EDM is aligned with the spin, while under time reversal, **spin reverses direction** but the EDM remains unchanged.

Number of events vs atau

Data and MC samples

2015 data

Data sample: data15_hi.periodAllYear.physics_UPC.PhysCont.DAOD_HION4.grp15_v01_p4952

GRL: data15_hi.periodAllYear_DetStatus-v105-pro22-13_Unknown_PHYS_HeavyIonP_All_Good_tolerable_L1CALmisconfigSatBCID

Trigger: HLT_mb_sptrk_vetombts2in_L1MU0_VTE50

Luminosity: 0.49 nb-1

2018 data

Data sample: data18_hi.periodAllYear.physics_UPC.PhysCont.DAOD_HION4.grp18_v01_p4952

GRL: data18_hi.periodAllYear_DetStatus-v106-pro22-14_Unknown_PHYS_HeavylonP_All_Good

Trigger: HLT_mu4_hi_upc_FgapAC3_L1MU4_VTE50

Luminosity: 1.44 nb-1

Total luminosity of 1.93 nb-1

MC samples

Signal samples:

- nominal: STARlight + Tauola
- alternative: STARlight + Pythia8

Background samples ($\gamma\gamma \rightarrow \mu\mu$):

- STARlight + Pythia8
- Madgraph + Pythia8

Additionally:

• truth-level $\gamma\gamma \to \tau\tau$ sample simulated with gammaUPC generator (for theory predictions - work in progress)

Background modelling

Exclusive dimuon production $\gamma\gamma \rightarrow \mu\mu$

Estimated using MC:

- STARlight+Pythia 8 and MG5+Pythia 8 event generators
- photon flux reweighted to match the flux from SuperChic

Diffractive photonuclear particle production

Estimated using fully data-driven method

 Template distributions built from events having extra 'soft' track with low pT < 0.5 GeV

Object reconstruction

Donoroute	Si-mal	Baseline
Property	Signal	Baseline
Muons		
Kinematic	$p_{\rm T} > 4$ GeV, $ \eta < 2.4$	$p_{\rm T} > 2 \text{ GeV}, \eta < 2.5$
Identification	LowPt	_
Impact parameter	$ d_0 < 0.3 \text{ mm}$	_
Electrons		
Kinematic	$p_{\mathrm{T}} > 4$ GeV, $ \eta < 2.47$ (excluding $1.37 < \eta < 1.52$)	_
Identification	LHLoose	_
Object Quality (OQ)	Good	_
Impact parameter	$ d_0 < 0.5 \text{ mm}$	=
Tracks		
Kinematic	$p_{\rm T} > 100$ MeV, $ \eta < 2.5$	_
Reconstruction	Loose Primary	_
Impact parameter	$ d_0 < 1.5 \text{ mm}$	_
Photons		
Kinematic	$p_{\mathrm{T}} > 1.5 \; \mathrm{GeV}, \eta < 2.37$ (excluding 1.37 $< \eta < 1.52$)	_
Identification	Author, NN_PID	_
Object Quality (OQ) and Cleaning	Good	3.
Cleaning	pass OQ quality	-
TopoClusters		
Kinematic	$p_{\mathrm{T}} > 1$ GeV for $ \eta < 2.5$ $p_{\mathrm{T}} > 0.1$ GeV for $2.5 < \eta < 4.9$	_
Quality	pass TopoSigCut pass HotspotCleaning	_

Event selection

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Observable	Preselection	n		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$E_{ m ZDC}^{A,C}$				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Region	1M1T SR	1M3T SR	1M1E SR	2M CR
$ \sum_{i} q_{i} = 0 = 0 = 0 - p_{T}^{(\mu, \text{trk})} > 1 \text{ GeV} p_{T}^{(\mu, \text{trk}, \gamma)} > 1 \text{ GeV}$	N_e^{sig} N_{trk} ($\Delta R > 0.1 \text{ from } \mu^{\text{sig}}$) N_{trk} ($\Delta R > 0.1 \text{ from } \ell^{\text{sig}}$)	= 1 = 0 = 1	= 1 = 0 = 3	= 1	_
$m_{\mu\mu}$ \sim 0.4 $<$ 0.2 $ \sim$ $>$ 11 GeV	$\begin{array}{c} \sum_{i} q_{i} \\ p_{\mathrm{T}}^{(\mu,\mathrm{trk})} \\ p_{\mathrm{T}}^{(\mu,\mathrm{trk},\gamma)} \\ p_{\mathrm{T}}^{(\mu,\mathrm{trk},\mathrm{cluster})} \\ p_{\mathrm{T}}^{(\mu,\mathrm{trk},\mathrm{cluster})} \\ m_{\mathrm{trks}} \\ A_{\phi}^{\mu,\mathrm{trk}(\mathrm{s})} \end{array}$	> 1 GeV > 1 GeV	_ _ _	= 0 	

OnOn topology weights

OnOn topology = no neutrons detected on the both sides of the Zero-Degree Calorimeter (ZDC)

- Large suppression of photonuclear background
- MC includes 0n0n, 0nXn, XnXn topologies → need extra reweighting to restrict to 0n0n topology
- Data-driven extraction of OnOn probability using dimuon events:

OnOn probability = ratio
OnOn/,,inclusive ZDC''
events as function of dimuon mass in
bins of dimuon rapidity

OnOn topology weights

- nominal weight exponential fit
- 68% CL band to estimate statistical uncertainty
- systematic uncertainty alternative fit (exponent with additional constant parameter)
- weights are additionally corrected for EM pileup

List of variables to unfold

1M1T Signal (Fiducial) Region:

- muon pT
- track pT
- (muon+track) invariant mass
- (muon+track) pT
- (muon+track) acoplanarity
- (muon-track) dη
- (muon+track) n

1M3T Signal (Fiducial) Region:

- muon pT
- 3-tracks pT
- (muon+3tracks) invariant mass
- (muon+3tracks) pT
- (muon+3tracks) acoplanarity
- (muon-3tracks) dη
- (muon+3tracks) η

1M1E Signal (Fiducial) Region:

- muon pT
- electron pT
- (muon+electron) invariant mass
- (muon+electron) pT
- (muon+electron) acoplanarity
- (muon-electron) dn
- (muon+electron) η

- remove detector effects (resolution, smearing etc.) from the observed data
- determination of particle-level differential cross sections

We use Iterative Bayesian Unfolding (IBU) as the unfolding method

formulate migration matrix using cause (C) and effect (E):

$$S_{i} = \sum_{j} R_{ij} T_{j}$$

$$U_{i} = \sum_{j} (R^{-1})_{ij} D_{j} \rightarrow S_{i} = \sum_{j} P(E_{i}|C_{j}) T_{j}$$

$$U_{i} = \sum_{j} P(C_{i}|E_{j}) D_{j}$$

i,j - bin indices, S - signal reco, T - signal truth, D - data, U - unfolded distributions, R - migration matrix

• $P(C_i|E_i)$ - unknown, determined using Bayes theorem:

$$P(C_i|E_j) = \frac{P(E_j|C_i) \Pr(C_i)}{\sum_k P(E_j|C_k) \Pr(C_k)}$$

Pr() - prior, initial prior = MC truth distribution, iterated priors = unfolding result from previous unfolding iteration

Response Matrices

- Response matrices are defined in the intersection region of the signal region and fiducial region
- **efficiency** fraction of truth-level events that satisfy the detector and reconstruction criteria and are successfully reconstructed
- acceptance fraction of reconstructed events that originate from the targeted fiducial phase space

- **purity** how cleanly a reconstructed bin corresponds to its associated truth-level bin
- **stability** how stable the mapping is from a truth-level bin to its corresponding reconstructed bin

Truth level fits

Fit methodology: Poisson based likelihood model

used statistical procedure is different from the "standard" methods in ATLAS

Standard ATLAS likelihood model

$$\mathcal{L}\left(\vec{\mu}; \vec{b}\right) = \prod_{i=1}^{N_{\text{bins}}} \frac{f_i\left(\vec{\mu}; \vec{b}\right)^{n_i} e^{-f_i\left(\vec{\mu}; \vec{b}\right)}}{n_i!} \prod_{j=1}^{N_{\text{syst}}} e^{-\frac{b_j^2}{2}}$$

- where n_i observed data, $f_i(\mu;b)$ prediction depending on a set of parameters of interest (POI's) and nuisance parameters
- second product: penalty terms for each nuisance parameter (Gaussians with means of 0 and errors of 1)
- maximize this likelihood with respect to μ and b
- This model assumes that the measurements are statistically uncorrelated.
- However, in the case of the fiducial cross section measurements, they are correlated
- modelling the measurements with Poisson probabilities is not appropriate → use Gaussian probabilities

Truth level fits

Fit methodology: Gaussian based likelihood model

inspired by ATLAS global PDF fit and HERA PDF fits

Alternative likelihood model

$$\mathcal{L}\left(\vec{\mu}; \vec{b}\right) = \exp\left[-\frac{1}{2} \sum_{i,k=1}^{N_{\text{bins}}} \left(n_i - f_i\left(\vec{\mu}; \vec{b}\right)\right) \left(V^{-1}\right)_{ik} \left(n_k - f_k\left(\vec{\mu}; \vec{b}\right)\right)\right] \prod_{j=1}^{N_{\text{syst}}} e^{-\frac{b_j^2}{2}}$$

- V is the covariance matrix between the measured data points
- The diagonal entries of V correspond to the quadratic sums of statistical uncertainties in data, signal MC and backgrounds.
- Systematic uncertainties are allowed to be correlated between bins (also among different observables) by assuming that they are proportional to the prediction:

$$f_i\left(\vec{\mu}; \vec{b}\right) \equiv f_i\left(\vec{\mu}\right) \left(1 - \sum_{j=1}^{N_{\text{syst}}} \gamma_{ij} b_j\right)$$

- $f_i(\mu;b)$ nominal prediction, γ_{ij} systematic uncertainty due a source j in ith bin. maximize this likelihood with respect to μ and b
- -2lnL now corresponds to a chi2 definition