TA3 Highlights

from WP3

(slides from Anna Hallin)

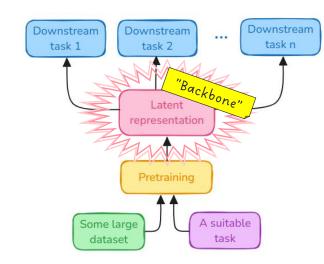
and WP4

(slides from Lorenz Gärtner)

Thomas Kuhr

Foundation models

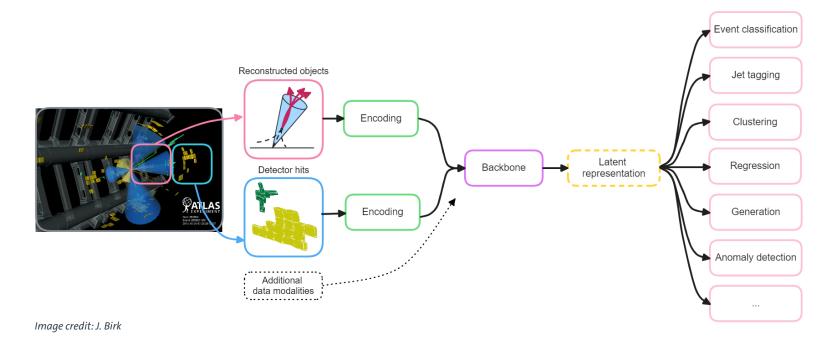
- Definition:
 - A foundation model is a machine learning model that once pretrained can be finetuned to different downstream tasks
 - The performance of pretraining + finetuning is better than training on the downstream task from scratch
- Large language models (LLMs) like Chat-GPT made foundation models famous, but the concept is not limited to this type of models.
- Foundation models do not need to be based on transformers, although most are.



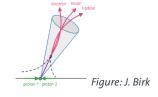
Why would we want to use them?

- Foundation models may be expensive to train, but once pre-trained, downstream tasks require
 less resources
 - Human resources
 - Compute resources
- Can leverage the pretraining to boost performance on small datasets
 - The model learns the general structure of the data during pretraining
 - Can focus on the details during finetuning
- Sharing pre-trained models can provide others with access to resources that are normally not accessible for them (data, computing resources)

What a particle physics foundation model could look like



A cross-task foundation model for jet physics

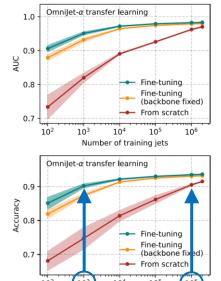


- OmniJet-α (Birk, AH et al, <u>Mach.Learn.Sci.Tech.</u> 5 (2024) 3, 035031; github) was the first foundation model for jet physics that was able to switch tasks: from generation to classification
- Unsupervised pretraining on generation
 - A model that learns to generate should learn what a jet in general is supposed to look like
 - Unsupervised pretraining means that we can use data directly
 - Using low level constituent features only $(p_T, \Delta \eta, \Delta \phi)$
 - Particle features are **tokenized** and jets are represented as a sequence of integers: $p_i = \{p_T, \eta, \phi, ...\} \rightarrow \text{token}_i$
 - Based on a modified GPT-1 architecture (Radford et al 2018 \mathscr{D}) with **next token prediction** as target: $p(x_j|x_{j-1},...,x_0)$

A cross-task foundation model for jet physics

proton 2 Figure: J. Birk

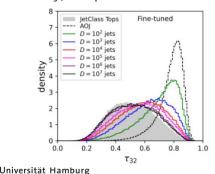
- OmniJet-α (Birk, AH et al, <u>Mach.Learn.Sci.Tech.</u> 5 (2024) 3, 035031; github) was the first foundation model for jet physics that was able to switch tasks: from generation to classification
- Unsupervised pretraining on generation
 - A model that learns to generate should learn what a jet in general is supposed to look like
 - Unsupervised pretraining means that we can use data directly
 - Using low level constituent features only $(p_T, \Delta \eta, \Delta \phi)$
 - Particle features are tokenized and jets are represented as a sequence of integers
 - Based on a modified GPT-1 architecture (Radford et al 2018 \mathscr{D}) with **next token prediction** as target: $p(x_i|x_{i-1},...,x_0)$
- Finetune on supervised classification
 - Demonstrated that the pretrained model outperformed the model trained from scratch, in particular on very small datasets



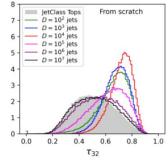
mber of training jets

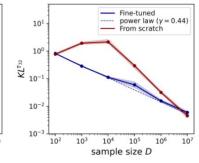
Training on real data

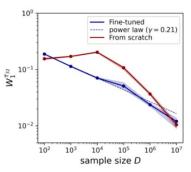
- Aspen Open Jets (Amram, AH et al, <u>Mach.Learn.Sci.Tech.</u> 6 (2025) 3, 030601; github)
 - Derived an unlabeled ML-friendly dataset from CMS Open data, containing 180M jets and made it public: fdr.uni-hamburg.de/record/16505
 - Expected to contain mostly QCD jets, and ~10⁵ top jets
- **Pretrain** OmniJet- α on this dataset, then **finetune** on generation of hadronically decaying top jets (simulation) \rightarrow better performance than training from scratch
- Having seen QCD jets is apparently helpful in order to generate top jets, also (or perhaps particularly) for quantities that are difficult to model, for example the n-subjettiness



DER FORSCHUNG | DER LEHRE | DER BILDUNG

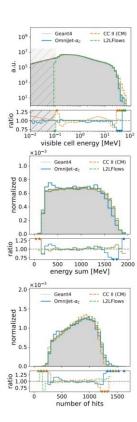






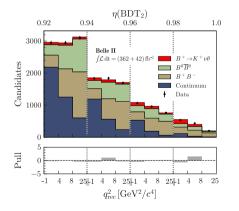
Beyond jets

- Can a foundation model deal with a completely different data type?
- OmniJet-α_C (Birk, AH et al, <u>JINST 20 (2025) 07, P07007</u>; github) applies the OmniJet-α architecture to point-cloud calorimeter showers
 - Possible since the model requires no physics knowledge and is not dependent on any specific type of input (sequence of integers)
 - No weights from the jet version of OmniJet-α are used: data types are presumably too different for the model to benefit from it
 - Generative training on photon showers shows good results
 - Learns the number of hits independently, no need to condition on it
- By re-using the architecture, we have shown a hint of translatability



Belle II has reported "Evidence for ${\it B}^+ ightarrow {\it K}^+ u ar{ u}$ decays"

PRD 109.112006



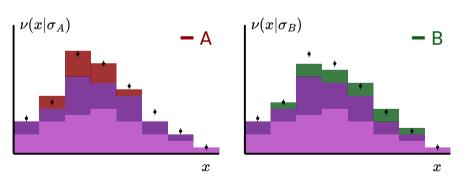
- Fit to kinematic distribution with SM signal scaled by μ
- $\mu = 4.6 \pm 1.0 \text{(stat)} \pm 0.9 \text{(syst)}$
- 2.7 σ above SM ($\mu = 1$)
- \rightarrow Hint for new physics (NP)?

1/7

 \rightarrow What kind of NP?

If there is NP kinematic distributions can change

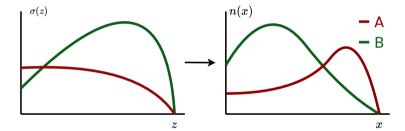
 $p(n|\text{model A}) \neq p(n|\text{model B})$



2/7

Templates from kinematic predictions

$$n(x|\sigma) = \int dz \; L \; \varepsilon(x|z) \; \sigma(z) = \int dz \; n_{\sigma}(x,z)$$



$$z(=q^2)$$
 – kinematic d.o.f.

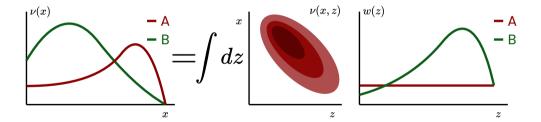
x - reconstruction / fitting variable(s)

L – luminosity

$$\varepsilon(x|z)$$
 – conditional efficiency $n_{\sigma}(x,z)$ – joint number density

Reweight to new model

$$\boxed{n(x|B)} = \int dz \, L \, \varepsilon(x|z) \, \boxed{\sigma_B(z)} = \int dz \, L \, \varepsilon(x|z) \, \boxed{\sigma_A(z)} = \int dz \, \boxed{n_A(x,z)} \quad \boxed{w(z)}.$$

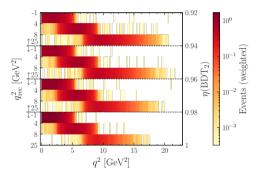


Discretization ⇒ joint number density histogram

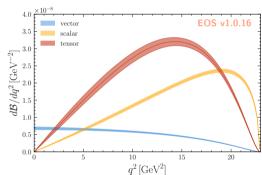
A reinterpretation framework EPJC 84, 693 (2024) github.com/lorenzennio/redist

Application to Belle II $B^+ \to K^+ \nu \bar{\nu}$ Result

Joint number density



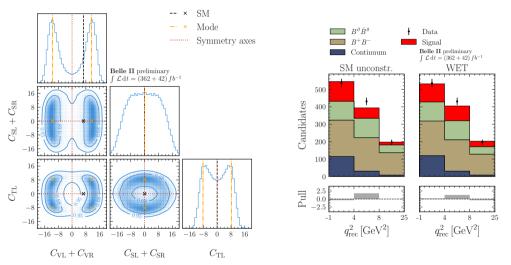
Weak Effective Theory (WET)



SM contains only *vector* contribution.

6/7

Result [arXiv:2507.12393]



First ever direct constraints on $b \to s\nu\bar{\nu}$ WET Wilson coefficients \triangleright

7 / 7

Summary

TA3 is advancing FAIRness with foundation models and reinterpretation methods

→ Integration in SDP (in PUNCH 2.0)?