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What is the Muon Collider?

A particle accelerator which produces, accelerates and collides muons.

What is an accelerator? Whatis a muon?

A machine for accelerating charged A fundamental particle, a
particles to high energies using lepton, ‘heavier’ electron,
electric or magnetic fields. 2.2us lifetime, 105MeV mass

Further details in
Muon Collider Theory
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What is the Muon Collider?

A particle accelerator which produces, accelerates and collides muons.

What is an accelerator? Whatis a muon?

A machine for accelerating charged A fundamental particle, a
particles to high energies using lepton, ‘heavier’ electron,
electric or magnetic fields. 2.2us lifetime, 105MeV mass

The muon collider has:
- High energy reach of protons, due to high mass / low bremsstrahlung
« High precision of electrons, as the muon is fundamental
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Further details in
Muon Collider Theory




What is the Muon Collider?

A particle accelerator which produces, accelerates and collides muons.

What is an accelerator?

A machine for accelerating charged
particles to high energies using
electric or magnetic fields.

What is a muon?

A fundamental particle, a
lepton, ‘heavier’ electron,
2.2us lifetime, 105MeV mass

The muon collider has: | IMCC and MuCol
- High energy reach of protons, due to high mass / low bremsstrahlung Following £SPPU 202
« High precision of electrons, as the muon is fundamental L , A
Muon lonization Cooling -
Experiment (MICE) -~
UK-based cooling experiment //
] (O 2004 - 2019 -
Muon Acceleration ///
Programme (MAP) _-
The Neutrino Factory Fermilab based programme Pl
and Muon Collider O 2011 - 2017 oot
First published muon Collaboration (NFMCC) -
collider concepts Muon Collider Workshops  Produced a NuFact design at CERN ///
G.l. Budker & A.N. Skirnsky Annual workshops, mostly in the US O 1999 - 2011 -
at Novosibirsk O ~1992 - 1999 //.—/
(O ~1969 -
- Further details in

Muon Collider Theory
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What will we deliver to the detector?

EnergY! Either 3 TeV (0IE2AA Center-of-mass

for16 T

20 x 10°*
15 x 10°°

cm™s” luminosity

Luminosity! GBS -

for 11T

MUO"S! 22x10" SE 1.8 x 10'°

Luminosity also depends on: ; ,
. Transverse Emittance - 25 um . Beta at IP: 1.5 mm o )ToC Nyos

e Longitudinal Emittance - 0.025 eVs « Repetition rate: 5 Hz 2C" 47e | NELN
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Why is this challenging?

1) Need to produce the muons 2) The muons decay

A) Produce a  |B) Target materiall ~ A) Quickly reduce the B) Quickly C) Collide
high power to withstand beam size Accelerate small
proton beam high-power beams
i arget & Front End Cooling Acceleration
H™ LINAC Accumulator Comeressor Pion Chicane & Muon Phase | Charge

Ring

Bunch Final

Collider
. Pre-  JSC LINAC RLA 1,2 RCS1,2,3 &4 J 3 TeV Collider
- Merge a5 Cooling accelerato

10 TeV Collider
Co%ling Buncher -

ing Target Absorber Buncher Rotator|Separation

3) Need to adjust for collective effects due to high intensity beam across the complex.

R. Taylor
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How do we simulate beam optics

We describe a beam as a collection of single particles with 6 coordinates:

P e M S x: Horizontal position
= ‘ ;:::_..__ ..___' ' % 10 1% . : _ ST, .
= o i | 2 o N £ " px: Horizontal momentum
Selen R | Ay NS . .. Transverse
—— — T y: Vertical position
X [mm]
o & py: Vertical momentum
= 25 N . E 25 . . . . .
= o) s o z or t : Longitudinal position or time
L e L b % S pz: Longitudinal momentum
Y [mm] Y [mm] Z [mm]
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How do we simulate beam optics

We describe a beam as a collection of single particles with 6 coordinates:

e T x: Horizontal position
= L aa < 1017, = a it 3o - AT~ .
= O] | = o £ px: Horizontal momentum
L e . .. Transverse
T e S = y: Vertical position
X [mm]
o & py: Vertical momentum
= 25 N . E 25 . . . . .
= o) s o z or t : Longitudinal position or time
L e L b % S pz: Longitudinal momentum
Y [mm] Y [mm] Z [mm]

Two* philosophies to simulations: + B A

-Either model magnets as a matrix, applied ———r Tfff oA

tO th e 6 D [F)h ase S pace VeCtO r hflﬁ’f’t’.\“\\% k %/ﬂﬂﬁﬁf i

-Or model magnets as a fieldmap (Bx, By, === = ED

Bz), and mterp()late forces in steps. Dipoles Sextupoles  Octupoles  Solenoids

*at least two
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Why are simulations challenging?

Simulation code wish-list includes...
in high Bz fields

@ Target, Front-End, Cooling

2 Muon decay and
‘<< tracking secondaries

¥y Everywhere

Particle interactions

with matter
Target, Cooling, MDI

Low-energy linear
acceleration of a long beam

Cooling, Acceleration

Radiation effects on

surrounding materials
Target, Collider

Matching beam conditions
between synchrotrons

Accelerator, Collider, (Everywhere)

Overlapping elements .
PP Non-linear effects

Collider

Collective effects including
space-charge, beam-beam

and wakefields
Everywhere

R. Taylor IMCC & MuCol Annual Meeting - Cross-Pollination Crash Course -12th May 2025



H™ LINAC Accumulator Comeressor
Ring ing

= (s

Short answer: Needs an intense, short beam.

For more information, tomorrow

Accelerator parallel: Proton Driver

DESY 08:30 - 10:15
IMCC & MuCol Annual Meeting - Cross-Pollination Crash Course -12th May 2025 08 |
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Proton Driver

H™ LINAC Accumulator Comeressor
Ring ing

= (s

Concept: Space Charge

\ 7 Repulsive forces
- hie between particles
causes de-focusing
in x and y and z.
Stronger at low E.

Concept: Tune
Particles oscillate

th rOughOUt the 1 Tune spread normally
ring. Frequency of s
this oscillation is 2
called the tune £
' 2 For more information, tomorrow
2l Tuné spread with space-charge Accelerator parallel: Proton Driver

Tune X (No. x oscillations per turn)

\\ DESY 08:30 - 10:15
R. Taylor IMCC & MuCol Annual Meeting - Cross-Pollination Crash Course -12th May 2025 08 |



https://marbletoast.github.io/AcceleratorToyDemo/

\

Particles oscillate
throughout the
ring. Frequency of
this oscillation is
called the tune

Concept: Tune

Concept: Space Charge

Repulsive forces
between particles

causes de-focusing
in x and y and z.
Stronger at low E.

>

No. y oscillations per turn

Tune spread normally

Tune spread with space-charge

Proton Driver
H™ LINAC Accumulator Come rrrrrr
ing

Ring

Parameters request a 2 MW beam at 5 GeV
or a 4 MW beam at 10 GeV.

Very short pulse rms of ~2 ns

High Significant

Intensity Space- Charge

Designing beam optics throughout:

« ALINACto 5 or 10 GeV

» A ring to accumulate to one pulse

« A compressor ring to shorten the pulse
All while having a wide tune spread.

For more information, tomorrow

Tune X (No. x oscillations per turn)

R. Taylor

Accelerator parallel: Proton Driver

Thanks to S. Johannesson

DESY 08:30 - 10:15
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https://marbletoast.github.io/AcceleratorToyDemo/

Input Target

A2 MW or4 M Graphite or [ decaying to p*"

p+ beam liquid metal

For more information, tomorrow

Accelerator technology parallel: Accelerator parallel: Muon Production,
Target technologies Radiation & Magnets

Thanks to P Jurj

DESY 10:45 - 12:30 DESY 16:15 - 18:00
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Input Target

500 p+

A2 MW or 4 M Graphite or o - + roduces
p+ beam liquid metal | decaying to 4? mu- and
60 mu+

For more information, tomorrow

Accelerator technology parallel: Accelerator parallel: Muon Production,
Target technologies Radiation & Magnets

Thanks to P Jurj

DESY 10:45 - 12:30 DESY 16:15 - 18:00
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Input Target

" decaying to p*” 4l§r%dutic:: q

fenoids 60
XaP°

A2 MW or4 M Graphite or

p+ beam liquid metal

Open questions:

« From what point do we define yield?

« What to do with the high-power protons after the target?
« How can we prevent the particles damaging the SC solenoids?
« How often do we need to replace the target?

For more information, tomorrow

Accelerator technology parallel: Accelerator parallel: Muon Production,
Target technologies Radiation & Magnets

Thanks to P Jurj

DESY 10:45 - 12:30 DESY 16:15 - 18:00
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IS the cooling challenaging?’

Short answer: Needing to be encased in solenoids

Cooling refers to reducing the emittance (size) of the Concept: Emittance

beam: |
c ey Th f the b

. Allows the beam to fit within a reasonable phisaer.i?)fce, € beam In

magnet size Expressed as E[m MeV]

Calculated as the Px/
covariance to |
include correlations
between the planes

Ex = area in X, Px 2D)

€y = area inY, Py (2D)
clL=areainZ, PzorT, E(2D)

€l =areain X, Px, Y, Py (4D)

€ =areain X, Px, Y, Py, T, Pz (6D)

s/

For more information, Thursday

Accelerator parallel: 6D Cooling, Accelerator parallel: Final Cooling,

Magnets & RF Magnets & RF
Seminar Room 4a+b, DESY Seminar Room 4a+b, DESY

08:30 - 10:15 10:45 - 12:30
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Cooling refers to reducing the emittance (size) of the
beam:
. Allows the beam to fit within a reasonable
magnet size

After target, beam is non-relativistic:
« Energy =5 — 200 MeV = 30 — 80% speed of light

Beam must be constantly
0.4 B. Stechauner f d k h . .
ocused to keep their size.
Lack of solenoid fields
causes emittance increase.

Need to ensure smooth
041 fields between solenoids,
bt e 1 toavoid emittance
increase (see, matching).

Concept: Emittance

The area of the beam in
phase-space.
Expressed as E[m MeV]

Calculated as the
covariance to

include correlations
between the planes

Ex = area in X,
€y =area in,
cL =areainZ,
ET =areain X,

Px (2D)
Py (2D)
Pz or T,

X, Y, Py

Px

E(2D)
(4D)

€ =areain X, Px, Y, Py, T, Pz (6D)

s/

For more information, Thursday

Accelerator parallel: 6D Cooling,

Magnets & RF

Seminar Room 4a+b, DESY

08:30 - 10:15
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Accelerator parallel: Final Cooling,

Magnets & RF
Seminar Room 4a+b, DESY

10:45 - 12:30




IS the cooling challenaging?’

Short answer: Needing to be encased in solenoids

IONIZATION COOLING
Elastic Electron Nuclear Multiple
Scattering Scattering

Cooling Heating

Favour low-A materials
E.g. Hydrogen, Lithium Hydride

There are other cooling methods,
but often require significantly more
time than the muon lifetime.
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IS the coolinc

challenging?

Short answer: Needing to be encased in solenoids

dispersion and a wedge absorber, so higher-energy

IONIZATION COOLING :;xfr\é)e(ﬁ?ilz only cools transversely. Can ensure longitudinal cooling
particles trave% through more material than lower-energy particles.

Elastic Electron Nuclear Multiple
Scattering Scattering

Cooling Heating

Favour low-A materials
E.g. Hydrogen, Lithium Hydride

There are other cooling methods,
but often require significantly more
time than the muon lifetime.

R. Taylor

Concept: Dispersion

Particles with higher momentum are

harder to bend.
Dispersion is the correlation between
position and momentum, introduce by

a bending element.

\

Lithium
Hydride

IMCC & MuCol Annual Meeting - Cross-Pollination Crash Course -12th May 2025



Why is the cooling challenging?’

Short answer: Needing to be encased in solenoids

However this only cools transversely. Can ensure longitudinal cooling
IONIZATION COOLING DY introducin% dispersion and a weJ e absorber, so higher-energy
particles travel through more material than lower-energy particles.

Elastic Electron Nuclear Multiple
MG Scattering For both forms of cooling, we ~

_ . need to restore the energy Concept: Dispersion
Cooling Heating lost, or else the muons will '
slow down to a stop. Particles with higher momentum are
Favour low-A materials So after our absorbers we harder to bend.
need an RF cavity to re- Dispersion is the correlation between

E.g. Hydrogen, Lithium Hydride

accelerate the beam. position and momentum, introduce by

There are other cooling methods, a bending element.

but often require significantly more
time than the muon lifetime.

\

Absorbers and RF Cavities need to

constantly be in high solenoidal fields!
Lithium

Don’t forget waveguides, power cables, :
cryogenics, instrumentation! Hydride
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Why is the acceleration challenging’

Short answer: Primarily due to fast-acceleration rate

i . )
| ot: Matching
Need a set RF gradlent per accelerator Iength to The beam oscillates within a stable area
get reasonable fransmission (90°%). (alld & buckey Diferncesin
10 RF Stat'0n§ throughout SynChrOtron' and filamentation (See Elleanor’s talk)
4506 cavites, 138 GV total 00 T dracion RCST

{ Injection RCS2 E. Lamb

More RF details from Simon

4

For more information, tomorrow

Accelerator parallel: Acceleration,

Magnets & RF
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Why is the acceleration challenging’

Short answer: Primarily due to fast-acceleration rate N
. ot: Matching
Need a set RF gradlent per accelerator Iength to The beam oscillates within a stable area
get reasonable transmission (90%). e S o ease
10 RF Stat'0n§ throughout synchrotron. and filamentation (See Elleanor’s talk)
4506 cavites, 138 GV total “* TExtraction RCS1 F. Lamb
54 Injection RCS2 '

More RF details from Simon

See Lisa’s talk

Hybrid RCS includes — ~— % . e

both fast-ramping oo fextil | Lsoubirou

normal-conducting

magnets and static _ sl

superconducting = =

magnets: 1’ N 4
This gives large orbits, :: For more information, tomorrow
and large magnet sizes 751 . Accelerator parallel: Acceleration,

Magnets & RF
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High beta means large beam sizes means high-
amplitude effects, especially with momentum

spreads.

R. Taylor

To get highly-focused beams at collision, the beta
must first increase as much as possible.

Concept: Beta function

Emittance is constant, but the beam size
changes according to focusing.o(s) = /e 8(s)
Known as beta, this parameter is
periodic throughout a synchrotron.

— VB BT Px

800

-
\% 400

200

X,y \/E
(o)
o
o

D [m]

|

|

|

|

|

|

|

|

|

|

™ -2
800 1000

Thanks to M. Vanwelde

For more information, Thursday

Accelerator parallel: Collider Design &
Magnets

Main Auditorium, DESY 08:30 - 10:15
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Concept: Beta function

Emittance is constant, but the beam size
changes according to focusing.o(s) = /e 8(s)
Known as beta, this parameter is
periodic throughout a synchrotron.

To get highly-focused beams at collision, the beta
must first increase as much as possible.

High beta means large beam sizes means high-
amplitude effects, especially with momentum

5
— — —D
i Py -
spreads. : VE— AR ;
—_— I | I 3
I% 600 l I [
I I I 2 —
= I I I E
,a'\ b
\%"‘- 400 : : I 1 )
L | 0
200 I I 1
I [ -1
I [
0 | T -2
0 200 400 600 800 1000

Thanks to M. Vanwelde

Definition: Chromaticity

Particles with different energy will focus at
different points. This affects their tune. For more information, Thursday
Chromaticity is the linear correlation between Accelerator parallel: Collider Design &
particle momentum and tune. Magnets

Main Auditorium, DESY 08:30 - 10:15
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IS decay challenqging?’

Short answer: Time

Muons have a rest lifetime of 2.2 us.

At 5 TeV, this would be 110 ms.
At 1.5 TeV, this would be 30 m:s.

The speed throughout the muon collider changes.
« Have a decay ‘budget’, based on energy and length
o Earlier stages are shorter but have non-relativistic energies
o Later stages are longer, have multiple passes, but relativistic energies

System: RLAT RLA2 RCST RCS2 RCS3 RCS4
Passes: 4.5 4.5 17 55 66 55

Acceleration may not be linear. l.e. accelerated boosted frames.

Please see poster during Tuesday reception

Currently estimate 30% of muons survive. But full start-to-end simulation required.
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Conclusion

R. Taylor

The beam physics challenges change
across the muon collider.

Fach system requires a different combination of
simulation codes to accurately model their effects.

Modelling these systems is essential to begin the design

process and guide magnet/RF/technological limits.

A start-to-end simulation would ensure matching between
systems and model rate of muon decay.

Overall aim is to provide a design which meets the goals of
energy, intensity and luminosity, at interaction points.

IMCC & MuCol Annual Meeting - Cross-Pollination Crash Course -12th May 2025
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Measuring ..
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Measuring
Chromaticity!

Change the momentum and repeat!

I =
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‘ I I D
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Measuring Chromaticity!
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