How to Extract the Weak Mixing Angle

using Full Run 2 ATLAS Experimental Data

Lukas Bayer Göttingen, 01.04.2025

HELMHOLTZ

The Weak Mixing Angle

accounts for EW loop corrections

a.k.a. the Weinberg Angle

- important SM parameter with more precise theory & indirect fit than direct measurements \rightarrow need to improve!
- measurable (for example) via parity violation in Drell-Yan process!

The Drell-Yan Process

in the ATLAS Detector

Full Run2: 140 fb⁻¹ of pp collisions

After event selection: ~ $85 \cdot 10^6 Z \rightarrow ee$ candidates

 Z/γ^*

 e^-, μ^-

DESY. | Weak Mixing Angle from ATLAS Run2 Data | Lukas Bayer, 01.04.2025

Forward-Backward Asymmetry

in the Drell-Yan Process

- parity violation in weak couplings
 - \rightarrow Z boson couples more to left-handed particles
 - \rightarrow Z polarization
 - \rightarrow Forward-Backward Asymmetry (A_{FB})
- at leading order:

$$\frac{d\sigma}{d(\cos\theta)} = \frac{\alpha^2}{4s} \left[\frac{3}{8} A(1 + \cos^2\theta) + B\cos\theta \right]$$

$$B = -4Q_l g_A^q g_A^l \chi_1 + 8g_A^q g_V^q g_A^l g_V^l \chi_2$$

Z/y interference Z resonance
depend on WMA

$$A_{FB} = \frac{N(\cos \theta > 0) - N(\cos \theta < 0)}{N(\cos \theta > 0) + N(\cos \theta < 0)}$$

Forward-Backward Asymmetry

in the Drell-Yan Process

- A_{FB} is not observable in lab frame \circ symmetric pp initial state \rightarrow quark direction unknown
- resolved in Collins-Soper frame!
 - special rest-frame of Z boson:

Collins-Soper Frame [arXiv:1606.00689]

valence quark PDF dominating at high momentum
 → quark direction likely to coincide with Z boost!

higher sensitivity to AFB in forward direction!

[arXiv:1910.07049]

Analysis Channels

and ATLAS Geometry

- **CC** (central-central)
 - two central electrons or muons
 - central: $\eta < 2.5$
 - tracking (SCT and TRT) and high-granularity calorimeters

Analysis Channels

and ATLAS Geometry

- **CC** (central-central)
 - two central electrons or muons
 - central: $\eta < 2.5$
 - tracking (SCT and TRT) and high-granularity calorimeters
- **CF** (central-forward)
 - \circ one central, one forward electron
 - forward: $\eta > 2.5$
 - no tracking and lower granularity of calorimeters
 - higher levels of QCD background
 - challenging performance work necessary!
 - <u>but</u> higher sensitivity

LAr forward (FCal)

Forward Electron Energy Calibration

(Work in Progress)

- correcting the raw energy of forward electrons using multi-variate-analysis
- harmonizing the energy response of calorimeter cells
- matching the mass spectrum of the Z boson in data and Monte-Carlo (in-situ calibration)
 - fit double-sided Crystal-Ball function to MC and data
 - smear MC to match data resolution
 - shift data to match MC energy scale

DESY. | Weak Mixing Angle from ATLAS Run2 Data | Lukas Bayer, 01.04.2025

Electron Identification

in the Forward Region of ATLAS

- no tracking!
- reconstruction using topological clustering algorithm
- identification based on shower-shapes in electromagnetic calorimeter
 - \circ shower-shape parameters condensed into likelihood discriminant

- differences in shower-shapes between data and MC \rightarrow different ID efficiencies
 - needs to be corrected!

Scale-Factors

for Forward Electron Identification

- select sample of forward electron candidates from data ("tag and probe")
- fit background and efficiencies in 3 ID regions
- calculate scale-factors (in bins of eta and pt)

Forward Multi-Jet Background Estimation

via Fake-Factor Method

no tracker in forward direction \rightarrow more fake and non-prompt electrons

- many possible sources:
 - heavy hadrons \rightarrow electrons + jets Ο
 - light hadrons with electron-like shower-shapes Ο
 - photons and conversion electrons Ο
- very difficult to simulate accurately
- make data-based approach to estimate MJ background!

MJ estimate

Extraction of Cross-Section and Angular Coefficients

of the Drell-Yan Process

- expansion of cross-section into 9 harmonic polynomials of lepton decay angles
 - purely mathematical and valid to any order! 0

fit to data \rightarrow simultaneous determination of angular coefficient and unpolarized cross-section

- differential (in p_{τ} , y_{τ} or m_{μ} , y_{τ}) cross-section measured in full lepton phase-space
- exceptional possibilities for phenomenological interpretations!
- ∞ level precision in the central region, sub-% uncertainties up to |y| < 3.6

 e^-, μ^-

forward-backward asymmetry!

Summary

and Time for Questions

- WMA is an important SM parameter
 - with precise theory predictions
 - needs to be **measured** more precisely as well!
 - $\circ~$ observable through forward-backward asymmetry in Drell-Yan $q\overline{q}~\rightarrow Z \rightarrow ee$
- higher sensitivity in **forward** direction
 - \rightarrow measure in central-forward channel (in addition to central-central)
- challenges of forward electron performance
 - energy calibration
 - electron identification + efficiency determination
 - background estimation
- extraction of full 4-fold differential cross-section by fitting angular expansion to data
- expected sensitivity competitive with recent CMS result
 - same order of magnitude es LEP results, but now with hadron collider!

for your attention

Contact

Deutsches Elektronen-	Lukas Bayer
Synchrotron DESY	DESY ATLAS Standard Model Group
	lukas.bayer@desy.de
www.desy.de	office phone: 2432

Forward-Backward Asymmetry

in the Drell-Yan Process

DESY. | Weak Mixing Angle from ATLAS Run2 Data | Lukas Bayer, 01.04.2025

Page 18