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HMC algorithm and the demands on the integrator [Duane et al. 1987]

HMC algorithm

1. Start with a gauge field of links [U ]i.

2. Draw a field of random and fictitious momenta [P ]i.

3. Perform a molecular dynamics step

([U ]i, [P ]i) → ([U ]i+1, [P ]i+1) = Φh([U ]i, [P ]i)

using a numerical integration scheme Φh.

4. Accept the new configuration with probability min(1, exp(−∆H)), where
∆H = H([U ]i+1, [P ]i+1)−H([U ]i, [P ]i).

5. Proceed with step 2.
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HMC algorithm and the demands on the integrator [Duane et al. 1987]

Detailed balance condition
The integrator Φh must satisfy

▶ Volume-preservation: |det ∂Φh([U ]i+1, [P ]i+1)/∂([U ]i, [P ]i)| = 1.

▶ Time-reversibility: ρ ◦ Φh ◦ ρ ◦ Φh([U ]i, [P ]i) = ([U ]i, [P ]i), where
ρ([U ]i, [P ]i) = ([U ]i, [−P ]i).

More demands: good energy conservation, efficient computational process
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Kevin Schäfers, Hessian-Free Force-Gradient Integrators 3/37



Numerical Integration Schemes for HMC Accuracy Numerical Stability Detection of Promising Integrators Numerical Results References

Decomposition algorithms

▶ Hamiltonian H(U, P ) = 1
2
⟨P, P ⟩+ S(U)

▶ Equations of motion(
U̇

Ṗ

)
=

(
0

ŜP

)
+

(
T̂ U
0

)
, T̂ = piei, Ŝ = −ei(S)

∂

∂pi

▶ Exact flows of subsystems

▶ ehŜ(U0, P0) = (U0, P0 − hei(S)T i) (momentum update)
▶ ehT̂ (U0, P0) = (exp(−P0h)U0, P0) (link update)

are reversible and symplectic maps.

▶ Promising approaches: splitting methods [McLachlan and Quispel 2002] and
force-gradient integrators [Omelyan, Mryglod, and Folk 2003]
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Splitting methods [McLachlan and Quispel 2002]

Splitting Method

Φh = ea1hT̂ eb1hŜ · · · eas−1hT̂ ebs−1hŜeashT̂ ebshŜ

▶ Consistent, if
∑

k ak =
∑

k bk = 1

▶ Symplectic (thus volume-preserving) as a composition of symplectic maps

▶ Time-reversible, if composition is self-adjoint

▶ A consistent self-adjoint splitting method satisfies

Φh = exp
(
h(T̂ + Ŝ) + αh3[T̂ , [T̂ , Ŝ]] + βh3[Ŝ, [T̂ , Ŝ]] +O(h5)

)
.
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Force-gradient integrators [Omelyan, Mryglod, and Folk 2003]

▶ Enhance splitting methods by including the commutator

Ĉ := [Ŝ, [T̂ , Ŝ]] = 2ŜT̂ Ŝ = 2ej(S)ejei(S) ∂
∂pi

into the computational process
▶ Force-gradient update

ebkhŜ+ckh
3Ĉ(U0, P0) = (U0, P0 − bkhei(S)T i + 2ckh

3ej(S)ejei(S)T i)

Force-Gradient Integrator

Φh = ea1hT̂ eb1hŜ+c1h3Ĉ · · · eas−1hT̂ ebs−1hŜ+cs−1h3ĈeashT̂ ebshŜ+csh3Ĉ

▶ Same geometric properties as splitting methods, provided that
weights ck are symmetric
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Benefits and Drawbacks of the Force-Gradient Approach

Benefits Drawbacks

Explicit integration force-gradient term more expensive
than force evaluation

Symplectic and time-reversible requires the implementation of
second-order derivatives contracted
with first-order ones

Higher order with less stages non-trivial implementation

Higher accuracy

Kevin Schäfers, Hessian-Free Force-Gradient Integrators 7/37



Numerical Integration Schemes for HMC Accuracy Numerical Stability Detection of Promising Integrators Numerical Results References

Approximation of Force-Gradient Updates [Schäfers et al. 2025]

▶ Force-gradient update: P0 − bkhei(S)T i + 2ckh
3ej(S)ejei(S)T i

▶ Approximation idea dates back to [Wisdom, Holman, and Touma 1996]

▶ Generalization to Lie groups [Yin and Mawhinney 2012]

Lie series expansion (F jej := ej(S)(U0)ej frozen vector field):

P0 − bkhei (S)
(
exp

(
−2ckh

2

bk
F jTj

)
U0

)
T i

= P0 − bkhei(S)T i + 2ckh
3ej(S)ejei(S)T i

− 2c2kh
5

bk
ei(S)ej(S)eiejek(S) +

4c3kh
7

3b2k
ei(S)ej(S)eℓ(S)eiejeℓek(S) +O(h9)

No force-gradient term required at the price of a second force evaluation
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Hessian-Free Force-Gradient Integrators [Schäfers et al. 2025]

ebkhD̂(bk,ck,h)(U0, P0) :=

(
U0, P0 − hei(S)

(
exp

(
−2ckh

2

bk
ej(S)(U0)Tj

)
U0

)
T i

)

Hessian-Free Force-Gradient Integrator

Φh = ea1hT̂ eb1hD̂(b1,c1,h) · · · eas−1hT̂ ebs−1hD̂(bs−1,cs−1,h)eashT̂ ebshD̂(bs,cs,h)

Approximation neither affects the time-reversibility nor the volume-
preservation of the integrator, but it introduces additional error terms
and the approximated force-gradient updates are no longer symplectic!
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Energy Conservation of Hessian-Free Force-Gradient Integrators

▶ Hessian-free variants no longer preserve a shadow Hamiltonian

▶ In general: linear energy drift of size O(τhmax{4,p})

▶ For trajectory lengths of τ ≈ 2, the energy drift will not have a significant
impact on the acceptance probability
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Convergence Order

▶ Order theory based on the
Baker–Campbell–Hausdorff formula

▶ For force-gradient integrators, the order
theory is available in [Omelyan, Mryglod, and

Folk 2003] and also covers conventional
splitting methods as a special case

▶ In [Schäfers et al. 2025], we extended the order
theory to the Hessian-free framework
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Minimization of the Principal Error Term

▶ Consider the norm of the leading error coefficients Errp+1 as a measure of
the accuracy (i.e., all brackets are set equal to one)

▶ Moreover, assume that two integrators Φ
{1}
h and Φ

{2}
h of the same order p

have principal error terms Err
{1}
p+1 and Err

{2}
p+1, as well as computational costs

cost{1} and cost{2}, respectively.
▶ Applying Φ

{1}
h with step size h has the same costs as applying Φ

{2}
h̃

with

step size h̃ := cost{2}

cost{1}
h

▶ Then, Φ
{1}
h is expected to be more accurate than Φ

{2}
h̃

at the same
computational costs, provided that

Err
{1}
p+1 · (cost{1})p < Err

{2}
p+1 · (cost{2})p
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Efficiency Measure

▶ Efficiency measure

Eff(p) :=
1

(nf + c · ng)p · Errp+1

with Errp+1 norm of leading error
coefficients [Omelyan, Mryglod, and Folk 2003]

▶ Principal error term has been modified for
the Hessian-free framework by
incorporating the additional error terms
with appropriate weights [Schäfers et al. 2025]
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Instabilities of Decomposition Schemes
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In lattice QCD simulations, the integrator with the highest
efficiency value is not necessarily the most efficient integrator!
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Numerical Stability

Hypothesis for interacting field theories
[Edwards, Horváth, and A. Kennedy 1997; Joó, Pendleton, A. D. Kennedy, Irving, Sexton, Pickles, and Booth
2000]

Since the high frequency modes of an asymptotically free field theory can be
considered as a collection of weakly coupled oscillator modes, the instability
described in the harmonic oscillator system will also be present for interacting
field theories. The onset of the instability will be caused by the mode with
highest frequency ωmax.
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Linear Stability Analysis

▶ Application of (Hessian-free) force-gradient integrators to the harmonic
oscillator (

ṗ
q̇

)
=

[(
0 0
ω 0

)
+

(
0 −ω
0 0

)](
p
q

)
▶ Since the right-hand side is linear, the two frameworks are equivalent

▶ Exact solution(
p(h)
q(h)

)
=

(
cos(z) − sin(z)
sin(z) cos(z)

)
︸ ︷︷ ︸

=O(z)

(
p0
q0

)
, z := ωh.

Kevin Schäfers, Hessian-Free Force-Gradient Integrators 18/37



Numerical Integration Schemes for HMC Accuracy Numerical Stability Detection of Promising Integrators Numerical Results References

Linear Stability Analysis

▶ Applying a self-adjoint force-gradient integrator yields an approximation

K(z) =
s∏

k=1

(
1 −bkz + 2ckz

3

0 1

)(
1 0
akz 1

)
=

(
p(z) K1,2(z)

K2,1(z) p(z)

)
to O(z) with stability polynomial p(z).

▶ Decomposition algorithms typically will be unstable for |hω| > z∗, where the
parameter z∗ denotes the stability threshold of the integrator

▶ By adapting the linear stability analysis for splitting methods
[Blanes, Casas, and Murua 2008], one can determine the stability thresh-
old z∗ so that the integrator is stable for all z ∈ (−z∗, z∗).
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Determination of the Stability Threshold

▶ We denote by z∗ the largest real non-negative number such that
|p(z)| ≤ 1 ∀z ∈ [0, z∗]

▶ Suppose that 0 = z0 < z1 < . . . < zℓ are the real zeros with even multiplicity
of the polynomial p(z)2 − 1 in the interval [0, z∗]. Then, z∗ = z∗ if

K1,2(zk) = K2,1(zk) = 0

for each k = 1, . . . , ℓ. Otherwise, z∗ is the smallest zk violating the
condition.

▶ For |p(z)| < 1, the eigenvalues are distinct. For |p(z)| = 1,
K(z) has double eigenvalue 1 or −1 and thus is only diago-
nalizable if K(z) = ±I, i.e., if K2,1(z) = K1,2(z) = 0.
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Relative Stability Threshold

▶ Consider the stability threshold z∗ as a measure of the numerical stability

▶ Moreover, assume that two integrators Φ
{1}
h and Φ

{2}
h have stability

thresholds z
{1}
∗ and z

{2}
∗ , as well as computational costs cost{1} and cost{2},

respectively.

▶ Applying Φ
{1}
h with step size h has the same costs as applying Φ

{2}
h̃

with

step size h̃ := cost{2}

cost{1}
h

▶ Then, Φ
{1}
h is expected to be stable at a lower computational cost than

Φ
{2}
h̃

, provided that

cost{2}

cost{1}
z{1}∗ > z{2}∗ ⇔ z

{1}
∗

cost{1}
>

z
{2}
∗

cost{2}
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Relative Stability Threshold

▶ Consider the stability threshold z∗ as a measure of the numerical stability
▶ Moreover, assume that two integrators Φ

{1}
h and Φ

{2}
h have stability

thresholds z
{1}
∗ and z

{2}
∗ , as well as computational costs cost{1} and cost{2},

respectively.
▶ Applying Φ

{1}
h with step size h has the same costs as applying Φ

{2}
h̃

with

step size h̃ := cost{2}

cost{1}
h

▶ Then, Φ
{1}
h is expected to be stable at a lower computational cost than

Φ
{2}
h̃

, provided that

cost{2}

cost{1}
z{1}∗ > z{2}∗ ⇔ z

{1}
∗

n
{1}
f + c · n{1}

g

>
z
{2}
∗

n
{2}
f + c · n{2}

g

Kevin Schäfers, Hessian-Free Force-Gradient Integrators 21/37



Numerical Integration Schemes for HMC Accuracy Numerical Stability Detection of Promising Integrators Numerical Results References

Numerical Integration Schemes for HMC

Accuracy

Numerical Stability

Detection of Promising Integrators

Numerical Results
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Detection of Promising Integrators Variants

Detecting promising integrators demands the investigation of

▶ the convergence order p,

▶ the leading error term, and

▶ the numerical stability.
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Maximizing the Stability Threshold?
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Figure: Analysis of the Hessian-free force-gradient integrator ABADABA
in terms of the efficiency measure Eff(p) and the relative stability
threshold z∗/(nf + ng).
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Example for 2 Degrees of Freedom
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Figure: The efficiency measure Eff(4) for the integrator BADABADAB eval-
uated at different values of a2 and b2. The white contour lines in-
dicate the values for the relative stability threshold z∗/(nf + ng).
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Promising Integrators

Integrator ID p nf ng Eff(p) z∗/(nf + ng)

BAB/ABA 2 1 0 10.73 2.0000
BABAB/ABABA 2 2 0 29.24 1.2766

BADAB 4 2 1 16.96 1.1547
ABADABA 4 3 1 26.19 0.7844
BABABABABAB 4 5 0 59.26 0.6284
BADABADAB 4 4 2 73.45 0.5243
BADABABADAB 4 5 2 80.13 0.4482
ABADABADABA 4 5 2 93.60 0.4463

BABABABABABABAB 6 7 0 1.40 0.4515
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Twisted Mass Simulations

▶ Nf = 2 twisted mass fermions with a clover term csw = 1.57551 and a bare
mass parameter of κ = 0.137322

▶ one Hasenbusch mass aκµ1 = 0.1

▶ nested integrator with three integration levels:
▶ macro level: ratio operator with lower bound λmin ≥ (µ2

1 − µ2
0)/µ

2
0 ≈ µ2

1/µ
2
0

▶ intermediate level: additional Hasenbusch term D†D + µ2
1

▶ micro level: Iwasaki pure gauge action

▶ on all integration levels, we use the integrator

Φh = eλhŜeh/2T̂ e(1−2λ)hŜeh/2T̂ eλhŜ

▶ λ = λerr ≈ 0.193, Eff(2) ≈ 29.24, z∗ ≈ 2.5531
▶ λ = λstab = 0.25, Eff(2) ≈ 10.73, z∗ = 4
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Twisted Mass Simulations

▶ Stability-enhanced version allows for a z∗(λstab)/z∗(λerr) ≈ 1.5667 times
larger step size when employed to the harmonic oscillator

▶ For varying number of time steps N on the macro level, we compute 30
trajectories of length τ = 1.0

▶ As a criterion for instability, we choose

σ2(∆H(N)) + 1.5 · std
(
σ2(∆H(N))

)
> f(N)

where σ2(∆H(N)) denotes the variance of ∆H when computing N time
steps per trajectory, std(σ2(∆H(N))) its standard deviation, and
f(N) = c0 +

c1
N2p is a least squares fitting function of the data

(N, σ2(∆H(N)))

▶ We denote the onset of instability as Nmin.
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Twisted Mass Simulations

µ2
1/µ

2
0 Nmin(λerr) Nmin(λstab) Nmin(λerr)/Nmin(λstab)

156.25 9 5 1.8000
625.00 18 12 1.5000
2500.00 35 20 1.7500
3682.60 40 24 1.6667
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4D Gauge Field Simulations in Lattice QCD with Wilson Fermions

Ensemble with a 48× 243 lattice generated with two dynamical nonperturbatively
O(a) improved Wilson quarks with a mass equal to half of the physical charm
[Knechtli, Korzec, Peardon, and Urrea-Niño 2022]

β = 5.3, κ = 0.1327, trajectory length τ = 0.1, varying step size h
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4D Gauge Field Simulations in Lattice QCD with Wilson Fermions

Ensemble with a 48× 243 lattice generated with two dynamical nonperturbatively
O(a) improved Wilson quarks with a mass equal to half of the physical charm
[Knechtli, Korzec, Peardon, and Urrea-Niño 2022]

β = 5.3, κ = 0.1327, trajectory length τ = 2.0, varying step size h
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Kevin Schäfers, Hessian-Free Force-Gradient Integrators 33/37



Numerical Integration Schemes for HMC Accuracy Numerical Stability Detection of Promising Integrators Numerical Results References

4D Gauge Field Simulations in Lattice QCD with Wilson Fermions

ID (nf + ng) ·N for ⟨Pacc⟩opt
BADAB 37.3751
ABADABA 34.0219
BABABABABAB 38.1049
BADABADAB 40.0282
BADABABADAB 46.1456
ABADABADABA 42.0871

Table: Comparison of the required computational cost (nf +ng) ·N to
achieve the optimal acceptance rate ⟨Pacc⟩opt = exp(−1/p) ≈
78% for fourth-order integrators. The results are obtained by
performing a linear interpolation in logarithmic space of the two
data points that are closest to the optimal acceptance rate.
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Conclusion and Outlook

▶ Refined analysis of Hessian-free force-gradient integrators (order theory,
geometric properties, minimum-error variants) available

▶ Hessian-free force-gradient integrators allow for a more efficient
computational process and are straightforward to implement into existing
software

▶ Numerical stability is crucial for the performance in lattice QCD simulations

▶ Next steps:
▶ Extension of the order theory and the linear stability

analysis to multiple time scales (nested integration)
▶ Problem-dependent integrator tuning by using a weighted

norm of the leading error coefficients
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Hessian-free force-gradient integrators in openQCD

▶ Hessian-free force-gradient integrators have been
implemented in openQCD (based on version 2.4).

▶ The code is publicly available on GitHub.

Thank you for your attention!
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Schäfers, Kevin, Jacob Finkenrath, Michael Günther, and Francesco Knechtli.
“Hessian-free force-gradient integrators”. In: Computer Physics
Communications 309 (2025), p. 109478. arXiv: 2403.10370.
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