Gamma-ray

Sylvia J. Zhu
sylvia.zhu@desy.de

DESY summer students 2025

HELMHOLTZ &00c s

astronomy

Hulk observe
nonthermal
Universe




so what are we going to talk about

Rough outline

today (intro)
- What are gamma rays
- What do we learn from gamma rays
tomorrow (detectors)
- What are some ways we can detect gamma rays
the day after tomorrow (sources)
- What objects produce astrophysical gamma rays
- What can we learn from these objects
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Part 1. What are gamma rays and why do we care?

Hulk excited to learn
VAL 4 -‘ \
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wavelength scales:
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https://commons.wikimedia.org/wiki/File:EM_Spectrum_Properties_edit.svg

atmospheric
transparency
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atmospheric
transparency
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10° eV 1 keV (kilo)
10°eV 1MeV (mega)
10V 1GeV (giga)
1012eV  1TeV (tera)
10'°eV  1PeV (peta)
101%eV  1EeV (exa)
1021 eV 1ZeV (zetta)
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A very brief history of astronomy
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A very brief history of gamma-ray astronomy

Observational gamma-ray astronomy began when we started to Launch satellites

The first astrophysical gamma-ray source (0SO-3, 1967-1968):
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[W. L. Kraushaar et al., ApJ 177 (1972)] 8
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https://ui.adsabs.harvard.edu/abs/1972ApJ...177..341K/abstract

The gamma-ray sky, 1972



https://ui.adsabs.harvard.edu/abs/1972ApJ...177..341K/abstract

[NASA/DOE/Fermi-LAT Collaboration]

amma-ray sky,new: = -~ -~ -+ -
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https://svs.gsfc.nasa.gov/12969

Most of the optical (visible) Universe produce thermal emission

Thermal emission can be described solely by a temperature

Spectrum of Solar Radiation (Earth)
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https://science.nasa.gov/sun/
https://commons.wikimedia.org/wiki/File:Solar_spectrum_en.svg

Most of the optical (visible) Universe produce thermal emission

Thermal emission can be described solely by a temperature and is a narrow spectrum
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https://science.nasa.gov/sun/

The gamma-ray sky is nonthermal

Thermal emission can be described solely by a temperature and is a narrow spectrum
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https://www.researchgate.net/publication/302302231_Solutions_for_Chapter_11

How do we get gamma rays?

Charged particles are accelerated to high energies before radiating photons

need an energy source and a way to transfer this energy to charged particles
(e.g., kinetic, gravitational, magnetic fields ...)
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https://www.aura-astronomy.org/blog/2020/08/05/astronomers-sink-their-teeth-into-special-supernova/
https://www.nustar.caltech.edu/news/nustar151026
https://www.esa.int/Science_Exploration/Space_Science/Neutron_stars_pulsars_and_magnetars

How do we get gamma rays?

Charged particles are accelerated to high energies before radiating photons
The charged particles can be leptons (e.g., electrons) or hadrons (e.g., protons)
-> the radiation processes can be leptonic and/or hadronic

electron proton

c U
O

leptons are elementary particles hadrons are made of quarks
-> can convert into other particles
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https://commons.wikimedia.org/wiki/File:Quark_structure_proton.svg

How do we get gamma rays?

Charged particles are accelerated to high energies before radiating photons
The charged particles can be leptons (e.g., electrons) or hadrons (e.g., protons)
-> the radiation processes can be leptonic and/or hadronic

e.g., synchrotron §
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How do we get gamma rays?

Charged particles are accelerated to high energies before radiating photons
The charged particles can be leptons (e.g., electrons) or hadrons (e.g., protons)
-> the radiation processes can be leptonic and/or hadronic

e.g., inverse Compton
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How do we get gamma rays?

Charged particles are accelerated to high energies before radiating photons
The charged particles can be leptons (e.g., electrons) or hadrons (e.g., protons)
-> the radiation processes can be leptonic and/or hadronic

e.g., Bremsstrahlung
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How do we get gamma rays?

Charged particles are accelerated to high energies before radiating photons
The charged particles can be leptons (e.g., electrons) or hadrons (e.g., protons)
-> the radiation processes can be leptonic and/or hadronic

e.g., pion decay
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What processes produce gamma rays?

Charged particles are accelerated to high energies before radiating photons
The charged particles can be leptons (e.g., electrons) or hadrons (e.g., protons)
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relevant to these lectures)
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What processes produce gamma rays?

Charged particles are accelerated to high energies before radiating photons
The charged particles can be leptons (e.g., electrons) or hadrons (e.g., protons)

DESY

(coloring indicates what is
relevant to these lectures)
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What processes produce gamma rays?

Nonthermal emission processes

Charged particles are accelerated to high energies before radiating photons
The charged particles can be leptons (e.g., electrons) or hadrons (e.g., protons)

example spectra under common conditions
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https://ui.adsabs.harvard.edu/abs/2009ARA&A..47..523H/abstract
https://ui.adsabs.harvard.edu/abs/2009ARA&A..47..523H/abstract
https://ui.adsabs.harvard.edu/abs/2009ARA&A..47..523H/abstract

What exactly do we mean by “spectra”?

how much is emitted vs photon energy

dN

—— : number of photons per unit time*area*energy
example units: ph cm-2 s keV-

2 2 @
> 5 2 TN
dN i _ 3 6/ .
iF X g = 5 X
o) 2
() o
E E E
detector .
spectrum at the detector . observation
properties

observation

analysis
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What exactly do we mean by “spectra”?

dN
—— : number of photons per unit time*area*energy
example units: ph cm-2 s-1 keV-1
|/ —— tells us at what photon energy the largest number of photons is emitted
example units: ph cm-2 s-
,dN - |
4 —_ tells us at what photon energy the largest amount of energy is emitted equivalently: I/F,/
dE example units: erg cm-2 s-1
eg.
dN dN , AN
i MiE biE
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Spectra

The spectrum tells you something about the
photon emission processes

more energy emitted at
\ lower photon energies

» (“soft spectrum”)

more energy emitted at

/ higher photon energies
> (“hard spectrum”)
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Multiwavelength spectra

how much is emitted vs photon energy

Combining the spectra across a wide range of photon energies allows us to better understand the

photon emission mechanisms
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https://ui.adsabs.harvard.edu/abs/2020JPhCS1468a2094C/abstract

Light curves

how much is emitted vs time

What if I want to see how the emission changes with time?

P2 (AN
/ (E) dE :“(integral) photon flux,” total number of photons detected over a photon energy range
Eq

= dN
/ L (E) dE :*“(integral) energy flux,” total energy detected over a photon energy range
Eq

[Fermi-LAT lightcurve repository]
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https://fermi.gsfc.nasa.gov/ssc/data/access/lat/LightCurveRepository/about.html

Light curves

What if I want to see how the emission changes with time?

Flo INT
2 (dN
/ (dE) dE  :*“(integral) photon flux,” total number of photons detected over a photon energy range
F '

) INT
dN
/ E (dE) dFE :*“(integral) energy flux,” total energy detected over a photon energy range
4 =
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Or you can also simply plot the
photon count rate over time
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Light curves

What if I want to see how the emission changes with time?

B -
2 (dN
/ <(1E> dFE
! a . . . . cre s
& Takes into account instrumental factors like changing detector sensitivity,
/-Hg AN but assumes a spectral model, and will change for different assumed spectra

dF

4

Does not require any additional assumptions —
except for the implicit assumption that the detector
sensitivity is not greatly changing during this time

Or you can also simply plot the
photon count rate over time
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Light curves

The lightcurve tells you about how the
emission source is changing

\ source is losing
energy quickly

>

source is losing
energy slowly

>

DESY
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What do we learn from gamma rays?

Multiwavelength lightcurves

Comparing the lightcurves at different wavelengths gives information about how the system is evolving
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modified from [H. Abdalla et al., Science 372 (2021)]
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https://ui.adsabs.harvard.edu/abs/2021Sci...372.1081H/abstract

Multiwavelength spectra

how much is emitted vs photon energy

Combining the spectra across a wide range of photon energies allows us to better understand the
photon emission mechanisms

[M. Cerruti, TAUP 2019] Markarian 421, an active galaxy
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=> hadronic sources are sources of cosmic rays
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https://ui.adsabs.harvard.edu/abs/2020JPhCS1468a2094C/abstract

ok great but what are cosmic rays

Historical term, meaning: any kind of ionizing radiation from space

In the 19080s, people started detecting ionizing radiation in the atmosphere

The rate did not decrease w/ altitude in the way that would be expected if
the source of radiation was terrestrial

<+——— From 1911 to 1913, Victor Hess made a series of balloon flights,
and found that the amount of radiation increases at high altitudes
-> it is coming from space

The radiation was termed cosmic rays

Note: the actual story about the discovery of cosmic rays is more complex;
see, e.g., [P. Carlson & A. de Angelis, EPJ H (2010)]
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https://www.deutschlandfunk.de/125-geburtstag-von-victor-hess-im-ballon-zum-nobelpreis-100.html
https://ui.adsabs.harvard.edu/abs/2010EPJH...35..309C/abstract

ok great but what are cosmic rays

Historical term, meaning: any kind of ionizing radiation from space
nowadays we usually mean charged particles (protons, atomic nuclei, electrons/positrons)
but “cosmic ray” can also mean neutral particles + the secondary particles produced by the ones listed above
which in principle encompasses pretty much everything???? (< °o°)’  1—1L

Oftentimes we see some diagram like the following examples:

so for astro purposes, most of the time we mean “charged particles”

DESY


https://nbi.ku.dk/english/research/experimental-particle-physics/icecube/astroparticle-physics/

Cosmic rays: Flux measured on Earth

Almost featureless spectrum over >11 orders of magnitude in particle energy

Cosmic Ray Spectra of Various Experiments
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https://web.physics.utah.edu/~whanlon/spectrum.html

Cosmic rays: Flux measured on Earth

Almost featureless spectrum over >11 orders of magnitude in particle energy

Cosmic Ray Spectra of Various Experiments |
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cosmic rays are charged particles -> deflected by magnetic fields

L mostly nuclei, a few % electrons

89% protons,
10% He,
1% heavier
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https://web.physics.utah.edu/~whanlon/spectrum.html
https://www.science.org/doi/pdf/10.1126/science.1134046

Cosmic rays: Flux measured on Earth

log Particles/(m? sr s GeV)
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mostly
cosmic rays are charged particles -> deflected by magnetic fields

|

they don’t point back to their origins

-> we need (mostly) indirect methods of determining
what is producing them

- Can this type of source accelerate particles to this energy?
- Is this type of source common enough to account for the
cosmic rays?


https://web.physics.utah.edu/~whanlon/spectrum.html
https://www.science.org/doi/pdf/10.1126/science.1134046

From cosmic rays to gamma rays

p+p+ 70
p+p Pp+n+7mt
P+p+7mTt+ 7T

hadrons
etc.

y photon

leptons
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From cosmic rays to gamma rays

p+p+ 70
p+p Pp+n+7mt
P+p+7mTt+ 7T

hadrons
etc.

y photon

P+ 78 leptons

P+Y
§n+n+
etc.
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From cosmic rays to gamma rays

719 decays in 10-16 s
P+p+7A¥ —> y+y ) o
r+/- decays 1n 10-8 s

pPp+pP p+n+mxt

P+p+ 7T+ T

hadrons
etc.

y photon

/p+ﬂ® — ity leptons

p+Yy
\n+7r+
etc.
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From cosmic rays to gamma rays

DESY

A % decay

[,

gamma rays can be produced by hadronic interactions,
and the spectrum would be a characteristic “pion bump”

~10% of the original proton energy is transferred to the
gamma rays

e.g., detect gamma rays with E, = 100 TeV

+ pion bump
= source can produce cosmic rays with Ecg = 1 PeV



Sources of cosmic rays?
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A % decay

[,

gamma rays can be produced by hadronic interactions,
and the spectrum would be a characteristic “pion bump”

~10% of the original proton energy is transferred to the
gamma rays

e.g., detect gamma rays with E, = 100 TeV

+ pion bump
= source can produce cosmic rays with Ecg = 1 PeV

“PeVatrons”


https://www.science.org/doi/pdf/10.1126/science.1134046

Sources of cosmic rays?

What gamma rays tell us about the cosmic-ray spectrum

log Particles/(m? sr s GeV)

/(m? sY)

Extragalactic

Knee
1 particle/(m? yr?)
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[M. Duldig, Science 314 (2006)]

UHECRs

We are extremely unlikely to detect gamma rays
at >PeV energies, especially from extragalactic sources

Ultra High-Energy Cosmic Ray

Sylvia J. Zhu, DESY summer students 2025


https://www.science.org/doi/pdf/10.1126/science.1134046

Extragalactic background light (EBL)

Gamma rays pair produce with other photons

y+y —> et +e

Gamma rays =100 GeV pair produce with
the optical/infrared background (from star
formation, active galaxies)

, Background light in the Universe
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3 3
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= L Gamma-ray ,
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: s

10°" : : : : : : : :
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Wavelength (meters)
[A. Cooray, R. Soc. Open Sci., Vol. 3 (2016)]
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https://ui.adsabs.harvard.edu/abs/2016RSOS....350555C/abstract

Extragalactic background light (EBL)

S s
~
rS
~

Yy+y —> et +e

Gamma rays =100 GeV pair produce with
the optical/infrared background (from star
formation, active galaxies)

Photons with higher energies are
increasingly absorbed before reaching us
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Sources of cosmic rays?

DESY
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UHECRs

We are extremely unlikely to detect gamma rays
at >PeV energies, especially from extragalactic sources

High-energy neutrinos are a better tracer of UHECR sources


https://www.science.org/doi/pdf/10.1126/science.1134046

Cosmic rays: Sources

The connection to neutrinos

719 decays in 10-16 s
DHp+d —> y+y ) .
r+/- decays 1n 10-8 s

pPp+pP p+n+mxt

P+p+ 7T+ T

hadrons
etc.

y photon

/p+ﬂ® —— Yty leptons

p+Yy
\n+7r+
etc.
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Cosmic rays: Sources

The connection to neutrinos

719 decays in 10-16 s
P+p+7® — y+y :
r+/- decays 1n 10-8 s
P+ p D+nN+mat —> Utr+ vy

et+ v+ Ve
p+p+7t+ 7

etc. L e+ Vu + Ve

/p+n®—>y+y

P+Y
N+ T ————— u+ + 7,
| > o+
atc. et + V. + Ve
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Gamma-ray sources are multimessenger sources

IceCube has found some neutrino events and hotspots
that seem to be correlated with blazars (active galaxies
w jets pointed at us)

You might hear more about this in Walter’s lectures.

If not, you should ask your friendly local neutrino
astrophysicist

DESY


https://www.astronomy.com/science/astronomy-enters-a-new-age-thanks-to-multi-messenger-signals/

Gamma-ray sources are multimessenger sources
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(we'll discuss this a bit on day 3)
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https://www.ligo.caltech.edu/page/press-release-gw170817
https://iopscience.iop.org/article/10.3847/2041-8213/aa920c

