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• Detectors and their place in science 

• Particle Interactions With Matter 

• Particle Detector Examples 
• Gas Detectors / Wire Chambers 

• Semiconductor Detectors  

• Scintillators / Photodetectors 

• Calorimeter 

• Cherenkov / Transition Radiation  

• Signal Processing / Systems / Triggering 

• Quantum Sensing  

• Modern Detector Examples (and Problems)

Detector Lecture Overview
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 Particle Standard Model 
• Fundamental particles 
• Forces, interactions 

 Cosmological Standard Model (ΛCDM) 
• Cosmic microwave background  
• Structure of galaxies, amount of H, He, Li 
• Accelerating expansion of the universe  3DESY Summer School | Steven Worm | July 28-29, 2025 

Standard Models of Particles and Cosmology
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Advancements in Particle & Astroparticle Physics

Theoretical Insight 
 Interplay of theory and  
experiment is essential

Better Understanding  
of the World
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Computing Advances 
Big Data, Machine Learning, 

Artificial Intelligence…
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“New directions in science are launched by new 
tools much more often than by new concepts.  
The effect of a concept-driven revolution is to explain   
old things in new ways.  

The effect of a tool-driven revolution is to discover new 
things that have to be explained”  

—Freeman Dyson ‘Imagined Worlds’ 
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Discovery of Cosmic Rays

 9

• Victor Hess, 1912
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• Between 1930 ~ 1980, lots of ‘elementary’ particles discovered 
• Many from two and three quark structures, different spin states… 

• For particle detection, we mainly worry about the particles that stick around for a (relatively) long time

The “Particle Zoo”

e,µ

γ

±,Kπ p,n

Particle Data Book
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• Typically separate out measurements by objective or particle type 
• Tracking of charged particles (where they went) 

• Momentum analysis (how the bend in a magnetic field) 

• Energy measurement (absorbed to find energy and location) 

• Particle identification (different particles, different methods) 

• There is a definite ordering to this, dictated by the particle properties  
• Non-destructive “tracking” is first: bend charged particles in a magnetic field, measure momentum and charge 

• Electromagnetic interactions: electrons and photons are absorbed, and energies measured in a calorimeter 

• Hadronic interactions: a massive detector helps to slow and absorb pions, measuring energy 

• Weak interactions: muons are highly penetrating (so they can wait until last)

Particle or Astroparticle Experiments

 11
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• Electron (e): track, contained cluster, E/P~1 

• Photon ( ): EM cluster, no track 

• Hadron jet ( ,p,K): track, extended (had) cluster 

• Neutron (n): hadronic cluster, no track        

• Pion ( ): track, extended (had) cluster 

• Muon ( ): penetrating track 

• Short lived (b): Displaced (mm) vertex 

• Weak (  …or dark matter!): Missing ET

γ
π

π

μ

ν

Generic Particle Detector

quark/gluon	
jet
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Typical Detector Layout (CMS)
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ATLAS

LHCBALICE

CMS

Collider Particle Detectors @ CERN
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• Charged particle interaction 
• Ionisation/Excitation 

• Bremsstrahlung 

• Multiple scattering 

• Cherenkov and transition radiation 

• Photon interactions 
• Photoelectric effect 

• Compton scatter - photon interaction emits an electron 

• Pair production -   

• Hadronic interactions 
• neutron capture - neutron absorbed,   emitted 

• nuclear interactions  

• Neutrino interactions 

γ → e+ + e−

γ

Particle Interactions
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Only a few particles relevant 
or particle detection: 
γ, e±, µ±, π±, K±, p, n, νe, νµ…

[https://pdg.lbl.gov/2025/reviews/rpp2024-rev-passage-particles-matter.pdf]
[https://pdg.lbl.gov/2025/reviews/contents_sports.html]

https://pdg.lbl.gov/2025/reviews/rpp2024-rev-passage-particles-matter.pdf
https://pdg.lbl.gov/2025/reviews/contents_sports.html
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• Charged particle interaction 
• Ionisation/Excitation - electron either excited to higher orbit or kicked out 

• Bremsstrahlung - electron slows and emits a photon 

• Multiple scattering - small-angle Coulomb scatter  

• Cherenkov and transition radiation - due to passage through dense media 

• Photon interactions 
• Photoelectric effect - photon absorbed, electron emitted 

• Compton scatter - photon interaction emits an electron 

• Pair production -   

• Hadronic interactions 
• neutron capture - neutron absorbed,   emitted 

• nuclear interactions - interaction with nucleus 

• Neutrino interactions 

γ → e+ + e−

γ

Particle Interactions

 18

Electromagnetic	

Strong	Force	

Weak	Force
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• Full treatment, with correction terms, is the Bethe-Bloch Equation: 

• where  
• I = mean excitation energy 

• K =  = 0.307 MeV cm2/mol 

• Tmax= max kinetic energy loss (per collision) =  

• delta and C/Z are corrections for high/low   

• Energy loss depends on particle velocity  
• For low momentum, follows  ,   correction important 

• For high momentum, Logarithmic rise from  MeV cm2/g 

• Minimum Ionising Particle (MIP): energy loss has a minimum at  

4πNAr2
e mec2

2mec2β2γ2

βγ

1/β2 C/Z
− dE

dx
≈ 2

βγ ≈ 3

Charged Particle Interactions: Bethe-Bloch
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− dE
ρdx

= K
Z
A

z2

β2 ( 1
2 ln 2m0c2β2γ2Tmax

I2 − β2 − δ(βγ)
2 − C(βγ, I)

Z )

[pdg.lbl.gov:	S.	Navas	et	al.	(Particle	Data	Group),	Phys.	Rev.	D	110,	030001	(2024)]

https://pdg.lbl.gov/2024/html/authors_2024.html
https://academic.oup.com/ptep/article/2022/8/083C01/6651666
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• What happens at low momentum?  At high momentum?   

• Bethe-Bloch range in red, not for low   (purple) or high   (orange) 

• Bethe-Bloch is an approximation, but good to a few %

βγ βγ

Charged Particle Interactions: Bethe-Bloch

 20[PDG]
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• Example of dE/dx used for particle identification in a Time Projection Chamber

ALICE TPC

 21[arXiv:1402.4476;	Int.J.Mod.Phys.A	29	(2014),	1430044]

https://arxiv.org/abs/1402.4476
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• Statistical process, but energy lost in a path x (called the straggling function) deposited as a Landau  

• Approximates a Gaussian only for very thick absorbers or large energy depositions

Charged Particles: Energy Loss, Fluctuations & Bragg Peak

 22[PDG]
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• For small (Coulomb) deflections, define angle:  

where  and   are the momentum, speed and charge, and   is the thickness in radiation lengths 

• Approximation (from Highland), but works well for ~98% of scatters and for small Z (and large x) 

• For layers or inhomogeneities, can’t simply add separate   contributions 

• Important for estimating positions and reconstructing tracks from measurement points

p, βc, z x/X0

θ

Charged Particles: Multiple Scattering
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θ0 = θrms
plane = 1

2
θrms

space

θ0 = 13.6 MeV
βcp

z
x
X0 [1 + 0.038 ln( x

X0

z2

β2 )]
= 13.6 MeV

βcp
x
X0 [1 + 0.038 ln( x

X0
)]

fast,	single-charge
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• Important process for high  and low mass particles (e- and µ-)   

• Energy loss from Bremsstrahlung 

• Averaging losses over the full Bremsstrahlung spectrum gives mean energy loss per length: 

• Where   is the radiation length; after  , an electron has 1/e of its initial energy

β

X0 x = X0

Charged Particles: Bremsstrahlung 
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− dE
ρdx

∝ E
m

Z2

A

− dE
dx

≈ 4αNAρ
Z2

A ( 1
4πϵ0

e2

mec2 )E ln 183
Z1/3

( dE
dx )rad = − E

X0
E(x) = E0e

− x
X0⇒

[PDG,	Wikipedia	(figure)]
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• For   particle pair production is possible 

• At high energies, pair production is dominant photon interaction (Bethe-Heitler) 

• Differential cross section is given by  

• where   is the fractional energy transfer to the   (or  ), and   is the incident photon energy 

• Integrating, we get

Eγ > 2me

x = E/k e− e+ k

Photons: Pair Production
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dσ
dx

= A
X0NA

(1 − 4
3 x(1 − x))

σpair(E) ≈ αZ2r2 ln Eγ

⇒ σ = 7
9

A
X0NA

Q:	why	not	
this	diagram?

	γ

	γ e-

e+

e+

e-

θγ
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• Essential for an EM Calorimeter (or Gamma-based astroparticle physics)

Pair Production + Bremsstrahlung = EM Shower

 26

Electromagnetic	
shower
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• Inelastic scattering of photons from quasi-free electrons (in the outer orbital shells) 

• Discovered in 1922, full cross section from Klein and Nishina in 1929: 

• First real use of Dirac equation… 

Photons: Compton Scattering

 27

σC = πr2
e

Eγ /mec2 (ln(2
Eγ

mec2 ) + 1
2 )

Ef
γ

Eiγ
= 1

1 + Eiγ

mec2 (1 − cos θγ)
	γ

	γ′ 

e-

	θγ

incident		γ
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• Photon completely absorbed; energy transferred to electron  

• For K-shell energies (internal orbit) with   : 

• Huge cross section at lower energies, as long as photon energy above threshold 

• Not just K-shell, although absorption probability higher for tightly-bound K-shell e 

• Several types of radiation possible (after excitation):  
• Photoelectron ejected directly 
• Characteristic X-rays emissions (from excited orbits)  
• Auger electrons (Meitner)  

• Process very important for photomultipliers; it starts the cascade

Eγ > EK

Photons: Photoelectric Effect

 28

σK
γ = 32(mec2)7

Eγ
α4Z5( 8

3 πr2
e )

[PDG,	Wikipedia	(figure)]
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• Photon interactions often “catastrophic” 

• Photon often absorbed, so treat as a flux  

• Different effects at different energies 
• High E: pair production 
• Mid-E: Compton Scattering 
• Low-E: Photoelectric effect

Photon Interactions

 29

	γ

	γ e-

e+

	γ

	γ′ 

e-

	θγ
e-		(or	 )γ

	γ

Pair	Production Compton	Scatter Photoelectric	Effect
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• Photoelectric processes dominate below a few 100 keV 

• Narrow window of energies where Compton is dominant 

• Pair production dominates above 1 MeV 

• EM showers (Bremsstrahlung + Pair Production) dominant 
energy loss mechanism at high energies

Photon Interactions - Summary

 30

Carbon	
Z=6

Lead	
Z=82
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• next week!

Cherenkov and Transition Radiation

 31Symmetry	Magazine
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• In addition to ionisation, hadrons ( …) can have strong interactions with matter 

• Hadronic interactions (quarks, gluons) create showers of particles similar to EM cascades

n, p, π±, π0, K

Strong Interactions and Hadronic Showers

 32

https://physicsworld.com/a/where-the-energy-goes/	
(simulation	of	500	GeV	proton	on	copper)

EM	component:		π0

neutrals:		n, ν, K0
L

charged:		π±, p, μ, He

Hadronic	
shower

Electromagnetic	
shower
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• High energy particle initiates a cascade (hadronic interaction) 
• create high energy charged particles ( etc) that make secondary cascades 

•    (and  ) decays to   and initiates an EM shower (Bremsstrahlung + pair production) 

• neutrinos escape, but some neutral particles ( ) continue to interact  

• Low energy particles decay or are absorbed 
• pions   muon + neutrino 

• muons   electron + neutrinos 

• neutrons   decays to proton+electron+antineutrino or is captured 

• Significant “invisible” energy 
• neutrinos escape undetected 
• binding energy of nucleons goes undetected 

• Large statistical variations in energy deposition event-to-event (much more than for EM shower)

π±, p,
π0 η γγ

n

→
→

→

Hadronic Interactions - Properties

 33
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• Two-stage process most likely for incoming   energy hadrons:  

1. Fast intranuclear cascade  
• collisions with nucleons, which initiate secondary collisions (cascade)  

• fast (>20 MeV) particles ejected, causing further interactions 

• spallation products mostly in the forward direction 

2. Slower evaporation stage  
• de-excitation of struck nucleus  

• isotropic “evaporation” of free nucleons,   (few MeV), sometimes  , etc 

• Huge diversity of interactions & response from absorber, eg Lead vs. Iron: 
• number of nucleons released is much bigger for lead; lower binding energy 

• many more neutrons vs protons in Pb; 4x more neutrons released 

• consequences: Pb gives more “invisible” energy, higher EM fraction 

• choice of absorber important for detector performance! 

O(MeV)

γ α

Spallation and Absorbers (Nuclear Energies)

 34

isotropic	
evaporation

intranuclear	
cascade

A.Kaplan,	A.Tadday	
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• Many neutrons result from spallation, evaporation 

• Typical steps: neutrons lose energy via elastic/inelastic collisions, then react strongly (capture) or decay 
• Almost all neutrons in absorber (after a few ns) are from evaporation process 

• Energy spectrum follows Maxwellian distribution: 

• Inelastic scatter ( ) at higher energies (MeV or greater) 

• Elastic scatter at lower energies 
• quickly reduces the kinetic energy: 50% loss for collision with hydrogen (water, plastic), 3.4% Fe, 1% Pb 

• neutrons ‘thermalise’ after few µs ( ) 

• Capture  

• neutrons ‘captured’ by a nucleus, emitting photon (binding energy): e.g. capture on hydrogen yields 2.22 MeV  

n → n′ + γ

Ekin ∼ 1/40 eV

γ

Neutrons

 35

dN
dE

= E exp(−E/T )
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• Detected indirectly, from e or p  

• Many detection techniques for neutrinos 
• Scintillators: Kamland, Borexino 

• Radiochemical methods: SAGE, GALLEX 

• Cherenkov detectors: SNO (photo), Kamiokande, 
MiniBooNE, KM3NeT, IceCube… 

• Radio detectors: ANITA 

• Tracking calorimeters: MINOS 

• Many neutrino ‘telescopes’ now operating

Neutrino Interactions (Weak Force)

 36



Particle Discoveries and Detector Technology

Silicon-based  
tracking detectors 
currently driving 
the field
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Wire Chambers

e+, neutron

Emulsions

pion
kaon

hyperons
anti-proton

J/Ψ
upsilon

W, Z top

resonancesCloud Chambers

Silicon 

neutral currents

Higgs

 37

1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 20201900

muonelectron

Bubble Chambers
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• From X-Rays to radioactivity, electrons, alpha particles 
• Röntgen discovers X-Rays in late 1895, send a mail (and photos) to Poincaré 

• Poincaré tries it out himself, gives lecture in Feb 1896 attended by Becquerel 

• Becquerel thinks it might be related to phosphorescence, and adds magnets to discover charged radiation 

• Curie gave the name “radioactivity”, and as Becquerel's student, does a lot of the work (and later new elements, etc) 

• Rutherford figured out properties, names them alpha, beta, gamma (1899), conducts first particle experiments 

• …all in just a few years!

Early History of Radiation

 38[https://www.earthmagazine.org/article/benchmarks-henri-becquerel-discovers-radioactivity-february-26-1896,	Wikipedia]

https://en.wikipedia.org/wiki/Radioactive_decay
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• Used in the early days (ie turn of century) by Röntgen, Bequerel   discovery of radiation 

• Continued to be used (mid 1950’s) because of the high resolution 
• Grain size of a developed silver halide cluster 10 nm - few µm (tiny!) 

• Picture is worth a thousand words…but you have to look! 

• Ingredients: 
• A silver halide, gelatin-plasticiser, and water 

• Layer of emulsion ~600 µm thick on a plate 

• Often stack many plates together 

• Can ‘load’ plates w/ wires, foils, powders to better define a target 

• How it works (basically just a photograph) 
• Charged particles ionize, deposit a lot of energy 

• Ionization (heat) causes silver halide grain to ‘develop’ 

• MIP makes ~270 developed grains per mm in standard emulsion 

• Slow/heavy particles make darker lines

→

Emulsions

 39[see	MoEDAL,	SHiP]

https://moedal.web.cern.ch/
https://ship.web.cern.ch/
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• Condensation is caused by ionizing particles passing through 
supersaturated air. 
• Invented in 1894, Wilson used it to see radiation (~1910, photo) 

• Used a piston to vary pressure and camera to record results 

• Invention really took off when… 
• Magnets added to bend charged particles, and 

• Geiger counter hooked to cooling mechanism for trigger  

• Workhorse for the field for many years, still great for outreach

Cloud Chamber

 40



 41DESY Summer School | Steven Worm | July 28-29, 2025 

Early Cloud Chamber Experiments
Carl Anderson (1931)

muon 
(1936)

positron 
(1932)

Detector Innovation   See New Things   Nobel Prize→ →
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• Most important particle detector in the 60’s and 70’s: many particles identified with bubble chambers 
•  Advantages: excellent resolution, large acceptance, mass measure for slow particles, can actually ‘see’ the particles  

•  Disadvantages: have to look at all of the pictures one at a time (no ‘trigger’), poor momentum resolution for high  ⃗p

Bubble Chamber

νµ + p  Λc+ + µ- + π- + π+→ Discovery of the Ω-

 42
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Fermilab 15-foot Bubble Chamber

 43
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• circa 1977-1984 

• 35 m3 liquid hydrogen 

• then world’s largest superconducting magnet  

• on SPS beamline (450 GeV) 

• triggering, timing info 

• 6 million photos

 44

Big European Bubble Chamber (BEBC)



 45

• Early tracking detectors used to “see” the particles 

• To study them in detail, modern tracking detectors measure charged particle position…
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• Basic idea:  
• apply voltage (E field) across an ionization media (e.g. gas) 
• collect and amplify charge liberated during ionization 
• simple example: smoke detector

Ionisation Chambers

 46

V
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• Basic idea:  
• apply voltage (E field) across an ionization media (e.g. gas) 
• collect and amplify charge liberated during ionization 
• simple example: smoke detector 

• Operational Details 
• secondary ionisation (delta electrons) 
• ionisation is Piossonian (+Fano factor)  
• too little Voltage: diffusion, recombination  
• too much Voltage: Geiger-Müller mode 
• just right: ionising or proportional signal 

• Lacking external field, we see 
• Diffusion 
• Electron capture or recombination  
• Charge transfer 
• Ion pair recombination 

Ionisation Chambers

 47

V

anode

E

cathode
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• Transport in gas with an E field and mobility µ (empirically determined): 

• For a “cold” gas 
• E field determines the motion ( ) 

•  ,  constant 

• For a “hot” gas 
• acceleration from   is not a factor 

•  constant,  not constant 

• For a large   
• high drift velocity, additional effects for ions and electrons 

• additional ionisations (amplification)   avalanche  
• gains up to 105: proportional  
• gains beyond 107—108: Geiger mode 
• very high voltages/gains: breakdown of gas (discharge)

⃗F =m ⃗a=e ⃗E
vD ∼ E μ ∼

⃗E
vD ∼ μ ∼

⃗E

→

Transport Properties of Electrons and Ions (with Field)

 48

vD = μE
P
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• Ionisation mode 
• no multiplication  
• full charge collected 

• Proportional mode 
• modest gain 102—105 
• signal proportional to ionisation 
• useful for dE/dx identification 
• mix of gasses, quenching 

• Limited Proportional mode 
• high/nonlinear gain 
• streamer chambers 
• strong quenching or shut off HV 

• Geiger-Müller mode 
• not proportional (discharge) 
• HV interrupt operation

Gas Amplification

 49[W.	Price]
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• Wire chamber features  
• planar, cylindrical or rectangular gas volume (“chamber”)  
• anode wire, e.g. Au plated W, dia. ~50 µm  
• cathodes at high voltage, ~1-2 kV  

• Gas properties  
• typically noble gas (Ar) + UV quench gas (hydrocarbon)  
• polyatomic molecules 
• energy dissipation by vibration  
• ageing properties 
• cost: flow&exhaust vs. recirculate&clean  

• Electronics  
• higher voltage: smaller transverse diffusion   
• readout: one circuit for each wire  
• fast, low noise amplification  
• modern solution: multi-channel ICs 

Gas Ionisation Chamber Basics

 50

wire amp discriminator digitisation
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• Simple gas volume, high voltage 

• Full discharge, so large signal 

• Signal not proportional 

• Often a long dead time (ms)  

• See examples…

Geiger Counter

 51

‘Modern’	examples

Original	Geiger	Counter

https://www.imagesco.com/geiger/about-geiger-counters.html



DESY Summer School | Steven Worm | July 28-29, 2025 

• Typically large area planar structures 

• High resistivity, so dead-time after discharge localised in a small region 

• Used in many large experiments for muon detection (e.g. ATLAS)  
• 10000 m2 coverage 
• 1 cm2 spatial resolution  
• 10 ns time resolution 
• > 99% efficiency  

• Operation  
• discharge region: 1-100 Hz/cm2 — 100-1000 pC  
• avalanche region: 1 KHz/cm2 — 10 pC 

Resistive Plate Chamber (RPC)

 52CMS Experiment and 10.1103/PhysRevD.74.032003
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• Developed by Charpak in ~1970 

• Field proportional, but high enough to generate secondary ionization  

• Used for tracking and triggering—typically wires in a planar geometry  

• Segmentation, with typically >1000 wires 

• Properties  
• Spatial resolution ~ d/√12  
• gas thickness (L)  ~5-10 cm  
• wire spacing (d) ~1-5 mm  

• Resolution   
• wire hit or no: ‘binary’ 
• flat probability distribution 
• resolution > 300 µm 

Multi-Wire Proportional Chamber (MWPC)

 53https://www.physicsmasterclasses.org/
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• Drift chamber detailed properties 
• similar to MWPCs, but lower voltage   no secondary ionization  
• only the primary ionization is drifted to collection points 
• can cover large areas; cylindrical and planar geometries the most common 

• Using detailed timing of electron drift, reconstruct position 
• gas composition and characterisation is crucial 

• knowledge of the drift time in the gas   better (x10) position than with MWPCs 

• resolution of ~80µm attainable

→

→

Drift Chamber

 54

CDF	Muon	Detectors
CDF	Central	Outer	Tracker	
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• Geometry 
• typically large cylinder with MWPC on two-side readout 

(x-y coordinates) and drift time for z  
• electrode gate in the middle (as a plane) for ions 
• electron drift to ends, pad or wire chamber readout 

• Properties 
• gas admixture, e.g. Ar:Methan 90:10  
• wires signal: dE/dx and PID  
• resolution (z-axis 1mm, r,phi: 160 µm)  

• for a given E, diffusion < 1 µm 

• ALICE TPC as an example 
• used for tracking + ID  
• low rates  

• large volume 

Time Projection Chamber (TPC)

 55

Cern	Courier

ALICE: 10.1016/j.nima.2010.04.042
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• GEMs 
• copper-insulator-copper layers + holes for avalanche  
• extremely small spacing possible (25-150 µm) 
• e.g. stacked design for gain (20x per layer, ~8k total) 
• 50 µm spatial resolution 

• Micromegas  
• micromesh metal grid  
• drift + amplification areas (mm gap, 25-150 µm spacing)  
• charge collection on pads after amplification 

• Properties 
• extremely fast (ns), high rates  
• reliable and simple operations 
• ~100% tracking efficiency

Micro-Pattern Gas Detector

 56

Micromegas

GEMs
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Silicon Particle Detectors



From p-n junction to simple detector 
• Single-crystal Si, reverse-biased diode array 
• Voltage gives E field (depletion) 
• Complicated structures possible: strips, pixels 

Electronics to read out signal, seed tracking  
• On-detector amplification, threshold and/or pedestal 

subtraction, conversion to digital  
• Adjacent pixels/strips combined into clusters  

• Cluster position + resolution seed track finding 
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Silicon Particle Detector
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• Ionization chamber medium could be gas, liquid, or solid  
• Push was towards higher precision tracking; the need for B vertex reconstruction provided a catalyst 
• Some technologies (ie bubble chambers) not applicable in collider environments 

• High-precision tracking advantages with solid media 
• Easily ionized, relatively large amount of charge 
• Locally high density means less charge spreading 
• Fast readout possible

Tracking Chambers and Solid Media 
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Gas Liquid Solid
Density Low Moderate High
Atomic number Low Moderate Moderate
Ionization Energy Moderate Moderate Low
Signal Speed Moderate Moderate Fast

[Spieler]
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• Ionization chamber medium could be gas, liquid, or solid  
• Push was towards higher precision tracking; the need for B vertex reconstruction provided a catalyst 
• Some technologies (ie bubble chambers) not applicable in collider environments 

• High-precision tracking advantages with solid media 
• Easily ionized, relatively large amount of charge 
• Locally high density means less charge spreading 
• Fast readout possible 

• Advantages… but also challenges:

Tracking Chambers and Solid Media 
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Gas Liquid Solid
Density Low Moderate High
Atomic number Low Moderate Moderate
Ionization Energy Moderate Moderate Low
Signal Speed Moderate Moderate Fast

⟺
⟺
⟺
⟺

+ low multiple scattering overall - high cost per surface (material, readout, cooling)
+ superb position resolution - high number of channels
+ thin/close to interaction point - low signals (with exceptions)
+ low ionisation energy - solid: relatively high material budget

[Spieler]
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Semiconductor Basics – Band Gap

 61

• As a gas, electron energy levels 
are discrete.  In a solid, energy 
levels split and form a nearly-
continuous band. 

• If the gap is large, the solid is an 
insulator.  If there is no gap, it is 
a conductor.  A semiconductor 
results when the gap is small. 

• Solid detector media with modest 
ionisation   semiconductor  

• For silicon, the band gap is 1.1 
eV, but it takes 3.6 eV to ionize 
an atom.  The rest of the energy 
goes to phonon exitations (heat). 

⇒

[Leo:	Techniques	for	Nuclear	and	Particle	Physics	Experiments]
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• Electrical properties are good 
• Forms a native oxide with excellent electrical properties 
• Ionization energy is small enough for easy ionization, yet large enough to maintain a low dark current 
• Can be cut into thin wafers, doped, etched, patterned with photolithography, combined with metals, etc 

• Mechanical properties are good 
• Easily patterned to small dimensions, microstructured 
• Can be operated in air and at a wide range of temperatures  
• Crystal; can be re-oriented, assembled into complex geometries 

• Availability and experience 
• Significant industrial experience and commercial applications 
• Readily available — one of the most abundant elements

Advantages of Silicon

 62
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• Impurities in the silicon crystal: from production or environment (C, O, N, also metals) 

• Implanted impurities can give positive (p) or negative(n) electrical properties: doping (B, As, P…) 

• Low-imputity silicon (float zone) used for detectors, as are standard (Czochralski) wafers 

Silicon Impurities
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[Kolanoski,	Wermes]
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• p-type and n-type doped silicon — impurities with 
electrical properties, acting to create either a trapped 
negative or positive charge 

• Together they form a region that is depleted of free 
charge carriers 

• The depleted region contains a non-zero fixed charge 
and an electric field 

• Ionization within this region drifts along field lines (rather 
than re-combining) 

• The intrinsic potential in the junction can be artificially 
increased; this depleted region allows charge collection 
from a large volume with relatively little applied voltage

P-N Junction Basics
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• Space-charge region depends on the doping.  Assuming it is 
uniform, the space-charge density ( ) is: 

• For the Electric field  , the boundary conditions are that 
 .  Thus when the charges balance: 

• From Poisson’s equation with permittivity   

• Integrating, and making use of  

ρ

E
E(−xp) = E(+xn) = 0

ϵ = ϵrϵ0

dV/dx = 0 at x = −xp and xn

The p-n Junction as a Detector
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ρ(x) = {
−eNA for −xp < x < 0,
+eND for 0 < x < xn .

NAxp = NDxn

Dopant  
Concentration

Carrier 
Density

Space Charge 
Density

Electric Field 
Strength (kV/cm)

Electric 
Potential (V)

 x xn −xp

 p
 n

 NA

 ND

 ρ(x)

 E(x)

 V(x)

d2V
dx2 = − ρ(x)

ϵ

dV
dx

=
eNA

ϵ (x + xp) for −xp < x < 0,

− eND

ϵ (x − xn) for 0 < x < xn .
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• Integrating again yields  

• where we can solve for C using   and  , and obtain 

• Solving for   and  , we can then find the total depletion width of 

• and when one concentration is much different than the other, for example  , then 

V(−xp) = 0 V(xn) = V0

xn xp

NA ≫ ND

The p-n Junction as a Detector
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V(x) =
eNA

ϵ ( x2

2 + xpx) + C for −xp < x < 0,

− eND

ϵ ( x2

2 − xnx) + C for 0 < x < xn

V0 = e
2ϵ

(NDx2
n + NAx2

p) .

d = xp + xn = 2ϵV0
e

(ND + NA)
NDNA

d = xn = 2ϵV0
eND

.
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• Segmentation of the diode into strips allows localized readout 
• 60 µm average strip pitch 
• Can be segmented on both sides 

• Reverse-biasing causes the entire region to deplete 
• p-n junction results in a relatively low operating voltage 
• Low dark current 

• Typical strip sensors are n-type silicon bulk and p-type 
implanted strips 
• Integrated polysilicon bias resistors provide distribution of bias V 
• p-stops maintain strip isolation on the n side 
• AC-coupled readout helps protect readout circuitry; e.g. silicon 

held at depletion voltage, capacitively coupled readout at ground

Silicon Strip Tracking Detectors
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• Diode leakage current is an important operational 
parameter 

• Sensor operated in “reverse bias” mode 
• Reverse voltage applied until “full depletion” 

• Diode capacitance: large structures act as capacitors 

• where C is capacitance, A is area and d the thickness of 
the depletion region 

• for typical d of 0.3 mm, C/A is approximately 35 pF/cm2

Sensor/Diode Properties

 68figure:	https://www.learnabout-electronics.org/

I = I0(e eV
KT − 1)

I0

C
A

= ϵ
d
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Standard Diode Sensor Geometries 

 69[Kolanoski,	Wermes]
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• Detectors now use modern electronics; transistors (1940’s) and MOS electronics (1950-60’s) 

• Complimentary Metal-Oxide-Semiconductor (CMOS) used for readout electronics, pixel sensors, etc 

• Next lecture… also radiation damage

CMOS Electronics

 70
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