Detectors

Particle Detectors for Particle and Astroparticle Experiments
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Detectors and their place in science
Particle Interactions With Matter

Particle Detector Examples
Gas Detectors / Wire Chambers
Semiconductor Detectors
Scintillators / Photodetectors
Calorimeter
Cherenkov / Transition Radiation
Signal Processing / Systems / Triggering
Quantum Sensing

Modern Detector Examples (and Problems)
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Standard Models of Particles and Cosmology
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Particle Standard Model
» Fundamental particles
* Forces, interactions
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Cosmological Standard Model (ACDM)

- Cosmic microwave background

+ Structure of galaxies, amount of H, He, Li
- Accelerating expansion of the universe



Advancements in Particle & Astroparticle Physics
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Advancements in Particle & Astroparticle Physics
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With new developments
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Advancements in Particle Physics
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Advancements in Particle & Astroparticle Physics

Accelerator Advances
ith accelerators we can create &7 g

2/ ®P Theoretical Insight
. and study new interactions §g

Interplay of theory and

N—p
Better Un

of the Computing Advances

of Big Data, Machine Learning,
Artificial Intelligence...
____________ R — . e

tanding «——1__
orld >

EEes TN URCRONERCNICRONON | =11 - 1Y o
GANAEDWOED D00 aHEsEEeas SRS T

New Detector Technology isssssssssssssfel ==
With new developments
come new capabillities

DESY. DESY Summer School | Steven Worm | July 28-29, 2025




DESY. DESY Summer School | Steven Worm | July 28-29, 2025

“New directions In science are launched by new
tools much more often than by new concepts.

The effect of a concept-driven revolution is to explain
old things in new ways.

The effect of a tool-driven revolution is to discover new
things that have to be explained”

—Freeman Dyson ‘Imagined Worlds’
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Discovery of Cosmic Rays
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The “Particle Zoo”

- Between 1930 ~ 1980, lots of ‘elementary’ particles discovered

- Many from two and three quark structures, different spin states...

» For particle detection, we mainly worry about the particles that stick around for a (relatively) long time
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Typically separate out measurements by objective or particle type
of charged particles (where they went)
analysis (how the bend in a magnetic field)
measurement (absorbed to find energy and location)

(different particles, different methods)

There is a definite ordering to this, dictated by the particle properties
Non-destructive “tracking” is first: bend charged particles in a magnetic field, measure momentum and charge
Electromagnetic interactions: electrons and photons are absorbed, and energies measured in a calorimeter
Hadronic interactions: a massive detector helps to slow and absorb pions, measuring energy

Weak interactions: muons are highly penetrating (so they can wait until last)

DESY. DESY Summer School | Steven Worm | July 28-29, 2025
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Generic Particle Detector

Electron (e): track, contained cluster, E/P~1
Photon (y): EM cluster, no track
Hadron jet (x,p,K): track, extended (had) cluster

Neutron (n): hadronic cluster, no track

“lon (7). track, extended (had) cluster

Muon (u¢): penetrating track
Short lived (b): Displaced (mm) vertex

Weak (v ...or dark matter!): Missing ET

DESY. DESY Summer School | Steven Worm | July 28-29, 2025

neutrino

e.m. calorimeter

had. calorimeter

muon chambers

muon
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Typical Detector Layout (CMS)

Om m 2m 3m am 5m 6m 7m

Key:
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Particle Interactions

Charged particle interaction
lonisation/Excitation

Only a few particles relevant Bremsstrahlung
or particle detection:

Multiple scattering
Y, et ux, e, K¢, p, N, Ve, V...

Cherenkov and transition radiation

Photon interactions
Photoelectric effect

Compton scatter

Pair production
Hadronic interactions

neutron capture

nuclear interactions

Neutrino interactions

[https://pdg.lbl.gov/2025/reviews/contents_sports.html]
DESY. DESY Summer School | Steven Worm | July 28-29, 2025 [https://pdg.Ibl.gov/2025/reviews/rpp2024-rev-passage-particles-matter.pdf] 17
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Particle Interactions

Electromagnetic <

Strong Force —

Weak Force —

DESY. DESY Summer School | Steven Worm | July 28-29, 2025

Charged particle interaction
lonisation/Excitation
Bremsstrahlung
Multiple scattering
Cherenkov and transition radiation

Photon interactions
Photoelectric effect
Compton scatter
Pair production

Hadronic interactions

neutron capture

nuclear interactions

Neutrino interactions

18



Charged Particle Interactions: Bethe-Bloch

Full treatment, with correction terms, is the Bethe-Bloch Equation:

dE /Z Z2 1 2m062ﬁ 2}/2Tmax
=K — In

o(py)  C(py.1)

pdx A p2\ 2 I?

where

| = mean excitation energy

K = 42N, r*mc* = 0.307 MeV cm2/mol

Tmax= max kinetic energy loss (per collision) = 2m, c*f*y*

delta and C/Z are corrections for high/low Sy

Energy loss depends on particle velocity

For low momentum, follows 1/,62, C/Z correction important

For high momentum, Logarithmic rise from - ~ 2 MeV cm?/g

Minimum lonising Particle (MIP): energy loss has a minimum at fy = 3

DESY. DESY Summer School | Steven Worm | July 28-29, 2025
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Figure 34.2: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous helium, carbon,
aluminum, iron, tin, and lead. Radiative effects, relevant for muons and pions, are not included.
These become significant for muons in iron for By 2 1000, and at lower momenta for muons in

higher-Z absorbers. See Fig. 34.23.

[pdg.Ibl.gov: S. Navas et al. (Particle Data Group), Phys. Rev. D 110, 030001 (2024)]19
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Charged Particle Interactions: Bethe-Bloch

* What happens at low momentum? At high momentum?
- Bethe-Bloch range in red, not for low Sy (purple) or high Sy (orange)

- Bethe-Bloch is an approximation, but good to a few %

I
|

| ! | I

[
|

h
= uw" on Cu
% 100 E_ M“—»”x _E
E - Bethe Radiative -
— -/ Andersen- -
GB) o Ziegler -
o : 'g - Radiative -
& %E effects E uc
g 10 23 reach 1%
e a - Minimum
% . jonization
7 - Nuclear
< - l losses ..
= 1 | | | | | | | |
0001 001 0.1 1 10 100 1000 10*  10°
By
| | | | | | | | | |
0.1 1 10 100 1 10 100 1 10 100
[MeV/c] [GeV/c] [TeV/c]

DESY. DESY Summer School | Steven Muon momentum [PDG] 20



ALICE TPC

- Example of dE/dx used for particle identification in a Time Projection Chamber
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Charged Particles: Energy Loss, Fluctuations & Bragg Peak

- Statistical process, but energy lost in a path x (called the straggling function) deposited as a Landau

- Approximates a Gaussian only for very thick absorbers or large energy depositions

A/x  MeV g~ ecm?)

0.50 1.00 1.50 2.00 2.50
. Heavy Charged Particle
1.0 - SOK 500 MeV pion in silicon N
P i} —
] : ,I !' L — 640 um (149 mg/cmzz) QB)
. S I N N N N 320 um (74.7 mg/cm~)  _|
0.8 NN u g © Bra eak
- : ,’ ! "-,_\\\, —— 160 um (374 111g/c1112) . - g8 P
~ [ [ A 80 um (187 mg/lem?) =
S 06 I = 2.
2 l ," =
G | - |~ W 8
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Figure 34.8: Straggling functions in silicon for 500 MeV pions, normalized to unity at the most
probable value A,/x. The width w is the full width at half maximum.
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Charged Particles: Multiple Scattering

. . -~ X r
For small (Coulomb) deflections, define angle: - .
v —
T ! ) A

_ Arms __ rms R T ¥olane

90 = leane = —\/5 @Space Spl\arTe\\\\;) — yflane \
* eplane

g _ 136MeV /% 1+00381<x 22> A

— < o, . n igure 34.10: Quantities used to describe multiple Coulomb scattering. e particle is inciden

0 'Bcp XO XO ﬂz if;fhe p;;iel(?f t}(i ﬁgfl :e. d to d b Itiple Coulomb scattering. The particl dent

13.6 MeV X X
_ =11+ 0.0381n<—>
pep Xo X

where p, fic, and z are the momentum, speed and charge, and x/X,, is the thickness in radiation lengths

Approximation (from Highland), but works well for ~98% of scatters and for small Z (and large x)

For layers or inhomogeneities, can’t simply add separate € contributions

Important for estimating positions and reconstructing tracks from measurement points

DESY. DESY Summer School | Steven Worm | July 28-29, 2025
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Charged Particles: Bremsstrahlung

Important process for high / and low mass particles (e- and p-) \v\

h-f=E 1'E 2

Energy loss from Bremsstrahlung

dE EZ°
_ & ®
pdx m A
e\‘OEz
Averaging losses over the full Bremsstrahlung spectrum gives mean energy loss per length: X
dE. Z2( 1 e )El 183
—— R~ 4a — n
dx APA drey m,c? Z1/3
dE E _x
(E)rad - = ?0 = E(x) = Ege %0

Where X, is the radiation length; after x = X,,, an electron has 1/e of its initial energy

DESY. DESY Summer School | Steven Worm | July 28-29, 2025 [PDG, Wikipedia (figure)] 24



Photons: Pair Production

For E, > 2m, particle pair production is possible

At high energies, pair production is dominant photon interaction (Bethe-Heitler) et

6ouii(E) ® aZ*r*InE, y

Differential cross section is given by

do A 4
= (1——x(1—x))
dx X()NA 3
where x = E/k is the fractional energy transfer to the e~ (or ¢™), and k is the incident photon energy
Integrating, we get €
7 A

9 XON A 14 <O

Q: why not
this diagram? o+

DESY. DESY Summer School | Steven Worm | July 28-29, 2025 25



Pair Production + Bremsstrahlung = EM Shower

- Essential for an EM Calorimeter (or Gamma-based astroparticle physics)

Development of gamma-—ray air showers

M

O =

14N 7\ <
14
O

=
.

i
T
4

/
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Photons: Compton Scattering

Inelastic scattering of photons from quasi-free electrons (in the outer orbital shells)

f
Ey 1

. L
E}l, 1+ Y

(1 —cosb,)

2
m,c

Discovered in 1922, full cross section from Klein and Nishina in 1929:

ﬂrg E}/ 1 120 — 60
Or = <ln<2 ) + —)
E,/m,? m,c? 2 s

— 2 75V
w— G60keV
w— 511keV
w1 .46MeV
w1 0MeV

First real use of Dirac equation... —_—

incident y

120 60
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Photons: Photoelectric Effect

Photon completely absorbed; energy transferred to electron

For K-shell energies (internal orbit) with £, > £ :

32(m, c?)’ 8
g}{{ — (m,C7) a4Z5(—7tr82)
E, 3

Huge cross section at lower energies, as long as photon energy above threshold
Not just K-shell, although absorption probability higher for tightly-bound K-shell e

Several types of radiation possible (after excitation):
Photoelectron ejected directly
Characteristic X-rays emissions (from excited orbits)

Auger electrons (Meitner)
Process very important for photomultipliers; it starts the cascade
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Photon Interactions

771‘11177

beam of
protons
Photon interactions often “catastrophic”
Photon often absorbed, so treat as a flux
N4
Different effects at different energies p
High E: pair production
Mid-E: Compton Scattering
Low-E: Photoelectric effect
Pair Production Compton Scatter
e+
g
y e
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Photon Interactions - Summary

Photoelectric processes dominate below a few 100 keV
Narrow window of energies where Compton is dominant
Pair production dominates above 1 MeV

EM showers (Bremsstrahlung + Pair Production) dominant
energy loss mechanism at high energies

Figure 34.15: Photon total cross sections as a function of energy in carbon and lead, showing the
contributions of different processes [50]:
0p.e. = Atomic photoelectric effect (electron ejection, photon absorption)
ORayleigh = Rayleigh (coherent) scattering—atom neither ionized nor excited
O Compton = Incoherent scattering (Compton scattering off an electron)
Knuec = Pair production, nuclear field
ke = Pair production, electron field
0g.dr. = Photonuclear interactions, most notably the Giant Dipole Resonance [51]. In these
interactions, the target nucleus is usually broken up.
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Strong Interactions and Hadronic Showers

- |n addition to ionisation, hadrons (n, p, z=, 7', K...) can have strong interactions with matter

- Hadronic interactions (quarks, gluons) create showers of particles similar to EM cascades

Hadronic
shower

Electromagnetic

EM component: 7’ N n shower

neutrals: n, v, K}
Charged: ﬂi’pa H, He ’_ o <’

https://physicsworld.com/a/where-the-energy-goes/
(simulation of 500 GeV proton on copper)
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High energy particle initiates a cascade (hadronic interaction)
create high energy charged particles (7™, p, etc) that make secondary cascades
7" (and 1) decays to yy and initiates an EM shower (Bremsstrahlung + pair production)

neutrinos escape, but some neutral particles (n) continue to interact

Low energy particles decay or are absorbed
pions — muon + neutrino
muons — electron + neutrinos

neutrons — decays to proton+electron+antineutrino or is captured

Significant “invisible” energy
neutrinos escape undetected

binding energy of nucleons goes undetected

Large statistical variations in energy deposition event-to-event (much more than for EM shower)

DESY. DESY Summer School | Steven Worm | July 28-29, 2025
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mtranuclear
...C.;ascade-

Spallation and Absorbers (Nuclear Energies)

Two-stage process most likely for incoming O(MeV) energy hadrons:

1. Fast intranuclear cascade

collisions with nucleons, which initiate secondary collisions (cascade)
fast (>20 MeV) particles ejected, causing further interactions T
spallation products mostly in the forward direction ‘\”Sdtrbpm
- eva oratlon
2. Slower evaporation stage
de-excitation of struck nucleus / X
iIsotropic “evaporation” of free nucleons, y (few MeV), sometimes @, etc - ~ Lead Iron |
' Tonization by pions 19% 21%
[onization by protons 37% 53% |
. . . . Total ionization 56% T74%
Huge diversity of interactions & response from absorber, eg Lead vs. Iron:
Nuclear binding energy loss 32% 16%
number of nucleons released is much bigger for lead; lower binding energy Target recoil 2% 5%
Total invisible energy 34% 21%
many more neutrons vs protons in Pb; 4x more neutrons released o | |
i l‘('lvl‘l_clﬁlc energy evaporation neutrons 10% 5% |
consequences: Pb gives more “invisible” energy, higher EM fraction | Number of charged pions dor o
: : Number of protons 3.5 8
choice of absorber important for detector performance! Number of cascade neutrons <4 &
' Number of evaporation neutrons 31.5 > |
Total number of neutrons 36.9 10
| Neutrons/protons 10.5/1 1.3/]
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Many neutrons result from spallation, evaporation

Typical steps: neutrons lose energy via elastic/inelastic collisions, then react strongly (capture) or decay
Almost all neutrons in absorber (after a few ns) are from evaporation process

Energy spectrum follows Maxwellian distribution:

dN

N o VEexp(—EIT
yr VE exp(—E/T)

Inelastic scatter (n — n’ + y) at higher energies (MeV or greater)

Elastic scatter at lower energies

quickly reduces the kinetic energy: 50% loss for collision with hydrogen (water, plastic), 3.4% Fe, 1% Pb

neutrons ‘thermalise’ after few us (£, ~ 1/40 eV)

Capture

neutrons ‘captured’ by a nucleus, emitting photon (binding energy): e.g. capture on hydrogen yields 2.22 MeV y

DESY. DESY Summer School | Steven Worm | July 28-29, 2025
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Neutrino Interactions (Weak Force)

Detected indirectly, from e or p

Many detection techniques for neutrinos
Scintillators: Kamland, Borexino
Radiochemical methods: SAGE, GALLEX

Cherenkov detectors: SNO (photo), Kamiokande,
MiniBooNE, KM3NeT, IceCube...

Radio detectors: ANITA

Tracking calorimeters: MINOS

Many neutrino ‘telescopes’ now operating
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Particle Discoveries and Detector Technology

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
kaon
e+ neutron | pion
electron muon hyperons
l anti-proton
resonances
Cloud Chambers l neutral currents
J/¥ 'I
upsilon
Emulsmns I W Z top
Bubble Chambers l
¢ é
Wire Chambers
Silicon
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2010 2020

Higgs

Silicon-based
tracking detectors
currently driving
the field
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Early History of Radiation

From X-Rays to radioactivity, electrons, alpha particles
Rontgen discovers X-Rays in late 1895, send a mail (and photos) to Poincare
Poincare tries it out himself, gives lecture in Feb 1896 attended by Becquerel
Becquerel thinks it might be related to phosphorescence, and adds magnets to discover charged radiation
Curie gave the name “radioactivity”, and as Becquerel's student, does a lot of the work (and later new elements, etc)
Rutherford figured out properties, names them alpha, beta, gamma (1899), conducts first particle experiments

..all in just a few years!

o — I8 Dalfle Yk Jin & d D /o
fopw hns . Gy Bi bt ho'mu .
Erhost om Mt & 8. o 05 s Aff, £ L6

,""%’ & ]: by,

' -
v .
-, y e ol o e -
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o .
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https://en.wikipedia.org/wiki/Radioactive_decay

Used in the early days (ie turn of century) by Rontgen, Bequerel — discovery of radiation

Continued to be used (mid 1950’s) because of the high resolution
Grain size of a developed silver halide cluster 10 nm - few pym (tiny!)

Picture is worth a thousand words...but you have to look!

Ingredients:

A silver halide, gelatin-plasticiser, and water

Layer of emulsion ~600 um thick on a plate

Often stack many plates together

Can ‘load’ plates w/ wires, foils, powders to better define a target
How it works (basically just a photograph)

Charged particles ionize, deposit a lot of energy

lonization (heat) causes silver halide grain to ‘develop’

MIP makes ~270 developed grains per mm in standard emulsion

Slow/heavy particles make darker lines
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P LSO
Figure 3.5: The star at A is caused by a cosmic ray (marked p) incident from above
colliding with a silver or bromine atom in the emulsion. The track f is due to a nuclear

fragment with charge about 5. Its decay at point B shows that it contained a hyperon.
The scale at the bottormn indicates 50 um. (Ref. 3.10)

[see MoEDAL, SHiP] 39



https://moedal.web.cern.ch/
https://ship.web.cern.ch/

Cloud Chamber

- Condensation is caused by ionizing particles passing through
supersaturated air.

* Invented in 1894, Wilson used it to see radiation (~1910, photo)
- Used a piston to vary pressure and camera to record results

* Invention really took off when...
- Magnets added to bend charged particles, and

» Geiger counter hooked to cooling mechanism for trigger

- Workhorse for the field for many years, still great for outreach

| /'high voltage
by /.4 |
heating
/ duct
glass
containments
lighting

(A

alcohol inflow and outflow

cooling black board
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Early Cloud Chamber Experiments T

Carl An_derson (1L931)

Detector Innovation — See New Things — Nobel Prize
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Bubble Chamber

» Most important particle detector in the 60’s and 70’s: many particles identified with bubble chambers

Advantages: excellent resolution, large acceptance, mass measure for slow particles, can actually ‘'see’ the particles

Disadvantages: have to look at all of the pictures one at a time (no ‘trigger’), poor momentum resolution for high p

Discovery of the €2-

DESY. DESY Summer School | Steven Worm | July 28-29, 2025
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Big European Bubble Cha

circa 19/77-1984

35 m3 liquid hydrogen

then world’s largest superconducting magnet
on SPS beamline (450 GeV)

triggering, timing info

6 million photos
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Early tracking detectors used to “see” the particles

To study them in detail, modern tracking detectors measure charged particle position...

_2APR87 _ 13MAR8B?7 5:38:12
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lonisation Chambers

Basic idea:
apply voltage (E field) across an ionization media (e.g. gas)
collect and amplify charge liberated during ionization

simple example: smoke detector

DESY. DESY Summer School | Steven Worm | July 28-29, 2025
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lonisation Chambers

Basic idea:
apply voltage (E field) across an ionization media (e.g. gas)
collect and amplify charge liberated during ionization

simple example: smoke detector

Operational Detalls
secondary ionisation (delta electrons)
lonisation is Piossonian (+Fano factor)

too little Voltage: diffusion, recombination

too much Voltage: Geiger-Muller mode EI .
just right: ionising or proportional signal Sos

Lacking external field, we see
Diffusion

Electron capture or recombination

Charge transfer

lon pair recombination

DESY. DESY Summer School | Steven Worm | July 28-29, 2025
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Transport Properties of Electrons and lons (with Field)

Transport in gas with an E field and mobility u (empirically determined): v, = %
For a “cold” gas
E field determines the motion (F =md=¢E)
vp ~ E, u ~ constant
For a “hot” gas S0
acceleration from E is not a factor I m @

vy ~ constant, 4 ~ not constant @ :

For a large E

high drift velocity, additional effects for ions and electrons i ; - d :
additional ionisations (amplification) — avalanche e b e g s e

high fields, experiencing ionizing collisions; due to the lateral dif-

ga|nS up to 105 prOpOrthnal fusion, a drop-like avalanche, surrounding the wire, develops. Electrons

are collected in a very short time (1l nsec or so) and a cloud of positive
ions is left, slowly migrating towards the cathode.

gains beyond 107—108: Geiger mode
very high voltages/gains: breakdown of gas (discharge)
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Gas Amplification

lonisation mode
no multiplication
full charge collected

Proportional mode
modest gain 102—10°
signal proportional to ionisation
useful for dE/dx identification
mix of gasses, quenching

Limited Proportional mode
high/nonlinear gain
streamer chambers
strong quenching or shut off HV

Geiger-Muller mode
not proportional (discharge)
HV interrupt operation
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Gas lonisation Chamber Basics

Wire chamber features
planar, cylindrical or rectangular gas volume ("chamber”)
anode wire, e.g. Au plated W, dia. ~50 ym
cathodes at high voltage, ~1-2 kV

(Gas properties
typically noble gas (Ar) + UV quench gas (hydrocarbon)
polyatomic molecules
energy dissipation by vibration
ageing properties
cost: flow&exhaust vs. recirculate&clean

Electronics

higher voltage: smaller transverse diffusion
readout: one circuit for each wire

fast, low noise amplification

modern solution: multi-channel ICs

DESY. DESY Summer School | Steven Worm | July 28-29, 2025

Electric Current

3 Tonisation event

—

XX
-9 o+ . | |
T Cylindrical chamber with end window
Variable d.c. subjected to ionising radiation
voltage source
wire amp  discriminator digitisation
ﬁ%{7 -
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Geiger Counter

- Simple gas volume, high voltage
- Full discharge, so large signal

- Signal not proportional

- Often a long dead time (ms)

- See examples...

Geiger Muller Tube

lonizing
Radiation
Metal
Tube Wall lonizing
Cathode Avalanch
/]

Mica
Window

/ Cathode

Particle
path

https://www.imagesco.com/geiger/about-geiger-counters.html
DESY. DESY Sum

-

Original Geiger Counter

+500 VDC

10 Meg

Signal Output

ANED

470K

— Ground

"ON AND OFF" AND RANGE SELECTOR SWITCH

SENSITIVITY ADJUSTMENT

METER N > LERO

-~
"3 BATTERY . — .
EM
IONIZATION ~] CHAMBER
CHAMBER - S~ VOLTAGE
BAT TERIES
FILAMENT BATTERIES

Ionization chamber for gamma (and beta) radiation.
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Resistive Plate Chamber (RPC)

Typically large area planar structures
High resistivity, so dead-time after discharge localised in a small region

Used in many large experiments for muon detection (e.g. ATLAS)
10000 m2 coverage

1 cm2 spatial resolution
10 ns time resolution
> 99% efficiency

Operation - ;)A(Itér::g:m
discharge region: 1-100 Hz/cm2 — 100-1000 pC f / '(;‘f:;itlg
avalanche region: 1 KHz/cm2— 10 pC o ‘ 222

\\\\\m\ 2 mm

=& —— (Graphite

A\ Insulator
Spacers

il " Aluminum

8-2000
8564A4
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Multi-Wire Proportional Chamber (MWPC)

Developed by Charpak in ~1970

Field proportional, but high enough to generate secondary ionization

Particle

Used for tracking and triggering—typically wires in a planar geometry el

Anode planes

Segmentation, with typically >1000 wires wires

Properties

!
i

Spatial resolution ~ d/\12
gas thickness (L) ~5-10 cm I

e

wire spacing (d) ~1-5 mm L

==

Resolution P
wire hit or no: ‘binary’
flat probability distribution
resolution > 300 um

~:~—--—--——‘—-—--———-4—
| =
? |
| =
o *

!
y
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Drift Chamber

 Drift chamber detailed properties
- similar to MWPCs, but lower voltage — no secondary ionization

» only the primary ionization is drifted to collection points
* can cover large areas; cylindrical and planar geometries the most common

» Using detailed timing of electron drift, reconstruct position
* gas composition and characterisation is crucial
- knowledge of the drift time in the gas — better (x10) position than with MWPCs

* resolution of ~80um attainable

icle track
graded potentials (kV) particle trac

-4 -3 -1 Ll v
‘ e-dr'if1"""f’.'l~.',-'l

4 —— field shee

/ « g s L o s.lenscs\y'irc('

field lines drifting  particle o fickd wie

10nization CDF Central Quter Tracker

CDF Muon Detectors
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Time Projection Chamber (TPC)

Geometry

typically large cylinder with MWPC on two-side readout
(x-y coordinates) and drift time for z

electrode gate in the middle (as a plane) for ions
electron drift to ends, pad or wire chamber readout

Properties

gas admixture, e.g. Ar:-Methan 90:10

wires signal: dE/dx and PID

resolution (z-axis 1mm, r,phi: 160 ym)

for a given E, diffusion <1 pym

ALICE TPC as an example

used for tracking + ID
low rates

large volume

DESY. DESY Summer School | Steven Worm | July 28-29, 2025

central membrane
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READOUT WIRE
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ELECTRODE % INNER FIELD
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ALICE: 10.1016/j.nima.2010.04.042

particles from drifting wire chambers
collsion

endcap

Cern Courier
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Micro-Pattern Gas Detector

GEMs
copper-insulator-copper layers + holes for avalanche

extremely small spacing possible (25-150 um)
e.g. stacked design for gain (20x per layer, ~8k total)

50 um spatial resolution

Micromegas
micromesh metal grid
drift + amplification areas (mm gap, 25-150 um spacing)

charge collection on pads after amplification

Properties
extremely fast (ns), high rates
reliable and simple operations
~100% tracking efficiency
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Silicon Particle Detectors

NuSe i ..‘;-_.,.:_;: peprewmpT o P TOE S

P .S
.5 e~ N

EEEEEENEENEEREENEER ' B D NI
e B JEFI AN
M e U000

R SININIWINTUINTNINININL WG W W S

> T

-
~— 4 - 3
- - —_———e v " ra -
‘\‘ 5 e Bepo—¢. B LEHNNIN
TN

g i

il Lo

PA g b e el e anedisln
.

o

—_——

3 300
2

,4‘.,
dteshdaiaii
o0

TR e

O

SANHERAR
$p0 gttty
G Adg e LY
PP O PP

o0

C

N R

!\M! il \'a'_“\\',“\“',\\\'\\“\'f\'\\"'\“\"~"~\‘."7‘\7'.'
Ll LA

o0 C oV o0 S0 \ \ C 'y g
) UHINAN ) ~ R
3 | o S N ) . . X h
L. N e S L’ 24 -
'............. ! - \ 70 QRN Q . - o
.. ...... ~ I R R R R U IR } 111 U
Sl | JoasAFLia e
7 HLrllico
o TR | O C 0

PSSR R
SENEeSaEERAGEE YO ! S MR

HO O

DESY. DESY Summer School | Steven Worm | July 28-29, 2025




Silicon Particle Detector

From p-n junction to simple detector
Single-crystal Si, reverse-biased diode array
Voltage gives E field (depletion) [[ T\i’-
Complicated structures possible: strips, pixels -

Electronics to read out signal, seed tracking /

On-detector amplification, threshold and/or pedestal
subtraction, conversion to digital

Adjacent pixels/strips combined into clusters

Cluster position + resolution seed track finding

=== silicon layer 1

- Sllicon layer 2
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Tracking Chambers and Solid Media

lonization chamber medium could be gas, liquid, or solid

Push was towards higher precision tracking; the need for B vertex reconstruction provided a catalyst

Some technologies (ie bubble chambers) not applicable in collider environments

High-precision tracking advantages with solid media
Easily ionized, relatively large amount of charge
Locally high density means less charge spreading
Fast readout possible
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High

Atomic number

_OW

Moderate

Moderate

lonization Energy

Moderate

Moderate

Low

Sighal Speed

Moderate

Moderate

Fast
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lonization chamber medium could be gas, liquid, or solid

Push was towards higher precision tracking; the need for B vertex reconstruction provided a catalyst

Some technologies (ie bubble chambers) not applicable in collider environments

High-precision tracking advantages with solid media
Easily ionized, relatively large amount of charge
Locally high density means less charge spreading
Fast readout possible

Advantages... but also challenges:

+ low multiple scattering overall
+ superb position resolution
+ thin/close to interaction point

1117

+ low Iionisation energy
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_OW

Moderate

Moderate

Moderate

Moderate

_OW

Moderate

Moderate

-ast

- high cost per surface (material, readout, cooling)

- high number of channels
- low signals (with exceptions)

- solid: relatively high material budget
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Semiconductor Basics — Band Gap

As a gas, electron energy levels

are discrete. In a solid, energy B L L
levels split and form a nearly- - L pimene—g
continuous band. E - ' N R
i Ll |7 oaeHas |
_ S conductionband ~ | o ELECTRONS
If the gap is large, the solid is an = | |aeHotons |
insulator. If there is no gap, it is -2 I -
a conductor. A semiconductor 2 oL i
results when the gap is small. 2 g |
5 s gl ;
: : : 4 z |
Solid detector media with modest e I
ionisation = semiconductor s ° "SI /5)E rtfe)
valenceband = CaTe  O-5sr(fiwg)siOeV.
For silicon, the band gap is 1.1 % R sepaaon "R 4
eV. but it takes 3.6 eV to ionize Fig 12 EnergylevelsmasystemofNatomsasafunctlonoftheseparatlonRbetween r s -
) the atoms The ethbrmm atomlc separatlon is Ro - .
an atom. The rest of the energy ' s T
goes to phonon exitations (heat). o 12z 3 4 5 &

' BAND GAP ENERGY (eV)
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Electrical properties are good
Forms a native oxide with excellent electrical properties
lonization energy is small enough for easy ionization, yet large enough to maintain a low dark current
Can be cut into thin wafers, doped, etched, patterned with photolithography, combined with metals, etc

Mechanical properties are good
Easily patterned to small dimensions, microstructured
Can be operated in air and at a wide range of temperatures

Crystal; can be re-oriented, assembled into complex geometries S

Availability and experience
Significant industrial experience and commercial applications

)
PTSN W S See SRS G GRS e B

Readily available — one of the most abundant elements
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Silicon Impurities

Impurities in the silicon crystal: from production or environment (C, O, N, also metals)
Implanted impurities can give positive (p) or negative(n) electrical properties: doping (B, As, P...)

Low-imputity silicon (float zone) used for detectors, as are standard (Czochralski) wafers

08080
oligsae
Siche

(a) n-dotiert (b) p-dotiert
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P-N Junction Basics

p-type and n-type doped silicon — impurities with
electrical properties, acting to create either a trapped
negative or positive charge

Together they form a region that is depleted of free
charge carriers

The depleted region contains a non-zero fixed charge
and an electric field

lonization within this region drifts along field lines (rather
than re-combining)

The intrinsic potential in the junction can be artificially
increased; this depleted region allows charge collection
from a large volume with relatively little applied voltage
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The p-n Junction as a Detector

Space-charge region depends on the doping. Assuming it is

uniform, the space-charge density (p) is:

—eNy  for —x, <x <0,
p(x) =
+eN, for O0<x<zx,.

For the Electric field E, the boundary conditions are that
E(-x,) = E(+x,) = 0. Thus when the charges balance:

From Poisson’s equation with permittivity e = €,¢,

A C)
dx2 €
Integrating, and making use of dV/dx = 0 at x = —x and x,
eNy
AV —(x+x,) for—x, <x <0,
E o eN

D
—(x—x,) for 0<x<ux,.
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The p-n Junction as a Detector

Integrating again yields
eNy , x?

(=—+xx)+C for—x, <x<0,
V(X)Z € 2 P 14

eNp 2

(5 —xx)+C for 0<x<yx,

€

where we can solve for C using V(—x,) = 0 and V(x,) = V,;, and obtain

Vo = i(ND)c,f + Nsz) :
2€ P

Solving for x, and X,, We can then find the total depletion width of

d=x,+x, =

2¢Vy (Np + Ny)
€ NDNA

and when one concentration is much different than the other, for example N, > N, then
d=x = \/ZGVO |
eND
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Silicon Strip Tracking Detectors

Segmentation of the diode into strips allows localized readout
60 ym average strip pitch
Can be segmented on both sides

Reverse-biasing causes the entire region to deplete

p-n junction results in a relatively low operating voltage
Low dark current

Typical strip sensors are n-type silicon bulk and p-type
implanted strips

Integrated polysilicon bias resistors provide distribution of bias V
p-stops maintain strip isolation on the n side

AC-coupled readout helps protect readout circuitry; e.g. silicon
held at depletion voltage, capacitively coupled readout at ground
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s yields ~24000e-/300um

readout strips
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f to readout —

67



Sensor/Diode Properties

Diode leakage current is an important operational

parameter
I = Io(e% — 1)

Sensor operated in “reverse bias” mode
Reverse voltage applied until “full depletion”

Diode capacitance: large structures act as capacitors

C ¢

where C is capacitance, A is area and d the thickness of
the depletion region

for typical d of 0.3 mm, C/A is approximately 35 pF/cm?2
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Standard Diode Sensor Geometries

Guard-Ring

Metall- /
kontakte
pt
nt
(a) pn-Flichendiode (b) Flachendiode mit Guard-Ring
Guard-Ring Guard-Ring
Zwischen-
streifen

Streifen

folanuski, Wermes 20
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CMOS Electronics

Detectors now use modern electronics; transistors (1940’s) and MOS electronics (1950-60’s)

Complimentary Metal-Oxide-Semiconductor (CMOS) used for readout electronics, pixel sensors, etc

gate

source

oxiae
channel

e v L
e o (or n) T p substrate

!

substrate
(a) MOSFET. (b) CMOS.

Next lecture... also radiation damage
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