

Recent results on particle acceleration Part II

Martin Pohl

Introduction

We apply our insights to Supernova remnants

We discuss their structure and properties

We perform radiation modeling

Question

Where can we best study particle acceleration?

Persistence Resolvability **Brightness**

Supernova remnants

Supernova remnants

Red: Hot gas

Blue: Synchrotron

Supernova remnants

Cassiopeia A

SN observed in 17th century

Advantages of SNRs

Persistence Resolvable in nearly all wavebands

Standard process

What are supernova remnants?

A blast wave driven by a stellar explosion

Inside: stellar ejecta

Outside: interstellar gas

Shock speed ~4000 km/s

Supernovae

There are two types of supernovae, type Ia (white dwarf collapse) and core collapse (death of massive star)

and hence two types of remnants

- Type Ia: Outflow into interstellar medium, no central object
- All other types: Outflow into wind bubble, possibly central pulsar

Simplified flow model

Type Ia: Outflow decelerates and turns into Sedov solution

Reverse shock disappeared

Accumulated mass large

R_s ~ t ^{0.4}

v。~ t ^{-0.6}

Simplified flow model

Typ Ic: Wolf-Rayet progenitor

Core-collapse and wind bubble

No Sedov transition visible

Shock development can be complicated, even under spherical symmetry ...

Supernova remnants

Expect shock acceleration of cosmic rays

- Spatial transport is advective and diffusive
- Rate of acceleration depends on turbulence spectrum
- Efficient acceleration should modify shock ... not observed as expected

Supernova remnants

- 1. Flow profiles from hydrodynamical simulations
- 2. Calculate particle transport on flow profiles

$$\frac{\partial N}{\partial t} = \nabla (D\nabla N - \vec{v}N) - \frac{\partial}{\partial p} \left((N\dot{p}) - \frac{\nabla \vec{v}}{3} Np \right) + Q$$

3. Consider transport of magnetic field

Acceleration

Advantages:

- Accurate treatment of acceleration and transport
- Self-consistent treatment of escape possible

Magnetic-field profile

Dynamically unimportant Induction equation

$$\frac{\partial \overrightarrow{B}}{\partial t} = \overrightarrow{\nabla} x (\overrightarrow{v} x \overrightarrow{B})$$

Here for Type 2p (RSG progenitor)

One zone modeling is insufficient

All parameters depend on location and time

That includes the particle spectra

We do know the radiation processes

Weaker magnetic field

Suzaku Fermi VERITAS INVERITAS INVERTISATION INV

Cas A Stronger magnetic field

Electrons: magenta and green Hadrons: blue Relative role depends on magnetic-field strength

Despite the limitations on the one-zone models, we can say some things

1) There is no evidence for strong cosmic-ray modification of shocks

Cosmic-ray feedback

Hard spectra expected in the TeV band

... not really seen, spectra tend to be soft

Cosmic-ray spectra

From a paper published in 2006

Gamma-ray spectra

Despite the limitations on the one-zone models, we can say some things

1) There is no evidence for strong cosmic-ray modification of shocks

2) The mean magnetic field is much stronger than by compression alone

Tycho's SN remnant: Model-independent estimate of average magnetic field

With damping B>170 μG

Magnetic field must be amplified!

Despite the limitations on the one-zone models, we can say some things

1) There is no evidence for strong cosmic-ray modification of shocks

2) The mean magnetic field is much stronger than by compression alone

3) The total cosmic-ray spectra are soft and do not extend to a PeV

Can we measure where magnetic field is amplified?

What is its amplitude?

Observation:

Nonthermal X-rays in filaments

Requires strong magnetic field

Magnetic turbulence related to particle acceleration?

X-ray filaments involve strong magnetic field

Origin unknown

Shock? Energetic particles? → should be turbulent

Fate unknown

If persisting, magnetic field must be very strong

Turbulent field should cascade away ...

Not seen in radio polarimetry...

How strong and where is it?

A) Filaments are loss limited \rightarrow gives magnetic field strength

B) Filaments are magnetic structures

Caused by damping of turbulence!

δB not determined

Clues from X-ray variability?

Energy losses require a few milliGauss!

BUT:

Damping gives same timescale

Short-lived spikes in turbulent field

May give too many secondary electrons

Summary Part II

Supernova remnants have given many important insights

- the type and internal structure matters
- No evidence for cosmic ray feedback
- No evidence for acceleration up to PeV scale
- Magnetic field amplification, but where and how strong?