



Recent results on particle acceleration Part III

Martin Pohl


Introduction

Two topics in more detail:

- Driving and transport of turbulence
- Structure of the wind bubble

Cosmic-ray anisotropy causes resonant driving of Alfven waves

Anisotropy relates to diffusive flux $\delta = -\frac{3D}{cN} \frac{\partial N}{\partial x}$

$$\delta = -\frac{3D}{cN}\frac{\partial N}{\partial x}$$

Cosmic-ray current causes nonresonant driving of Bell modes

Current relates to streaming in plasma $i = qNv_{CR}$ Threshold in streaming energy density

Both effective upstream of the shock!

Spatial part of transport equation $\frac{\partial}{\partial x} \left(vN - D \frac{\partial N}{\partial x} \right)$

In frame of upstream plasma *v*=0 diffusive flux provides streaming!

Steady-state in shock frame $N = \frac{c}{v} + N_0 \exp\left(\int^x dy \, \frac{v(y)}{D(y)}\right)$ Boundary N=0 at infinity $\rightarrow C=0$

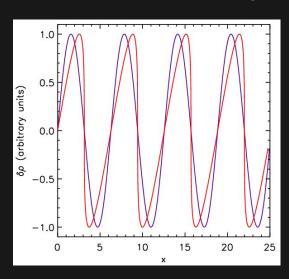
Exponential cut-off, because v < 0

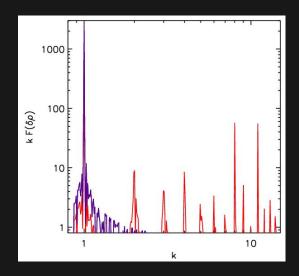
If v and D are approximately constant upstream

- \rightarrow cosmic ray precursor $N = N_s \exp\left(-\frac{|v_s|}{D}(x x_s)\right)$
- \rightarrow Spatial scale $D/|v_s|$
- → Determines acceleration rate
- → Energy dependence through diffusion coefficient
- → Driving rate of turbulence also falls off exponentially

What if the diffusion coefficient increases with x?

- → Precursor scale *D / v* increases
- \rightarrow Steady state streaming rate still $v_s N$
- → Acceleration rate decreases
- → Precursor unbound, if *D* increases at least linearly




Magnetic turbulence

What is cascading?

Example: Adiabatic sound wave

Magnetic turbulence

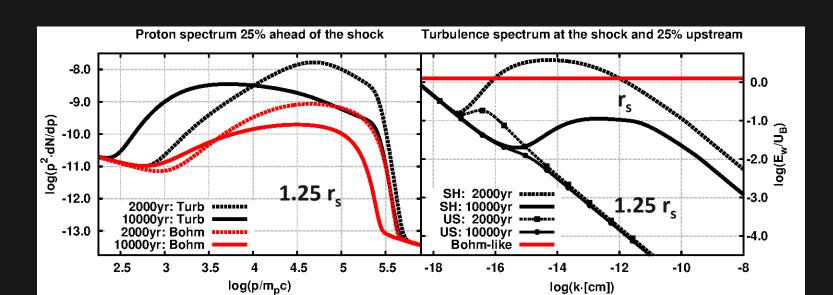
$$\frac{\partial E_W}{\partial t} = - (v \nabla_r E_W + c \nabla_r v E_W) + k^3 \nabla_k D_k \nabla_k \frac{E_W}{k^3} + 2(\Gamma_g - \Gamma_d) E_W$$
Advection + Compression Cascading Growth + Damping

Energy density in magnetic turbulence per unit logarithmic bandwidth

$$B_{tot} = \sqrt{B_0^2 + 4\pi \int E_W d \ln k}$$

The equation describes isotropic, Alfvenic turbulence in 1D and spherical symmetry. Same spatial grid as for cosmic rays

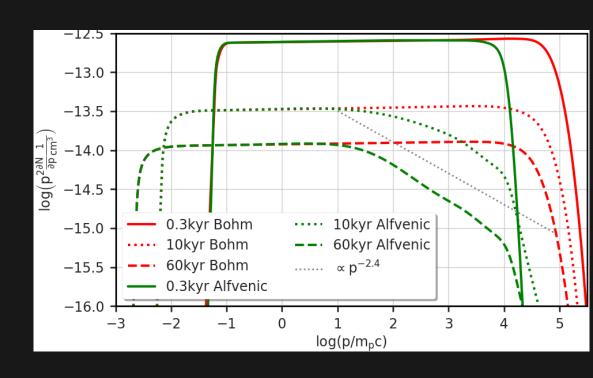
Turbulence growth at the largest scales takes time and limits E_{Max} !


Supernova remnants

Particle spectra ahead of shock change significantly!

In total, the spectrum of accelerated particles is often softer

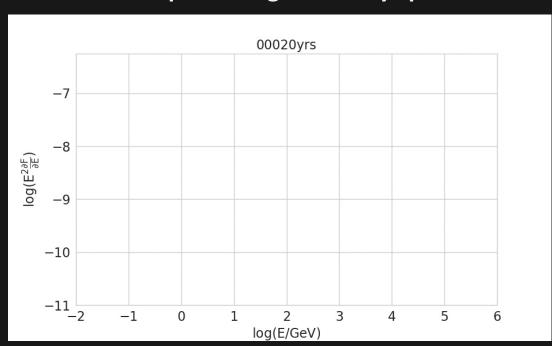
(Brose et al.)



Supernova remnants

- Time-dependence limits $\overline{E_{max}}$
- Fast reduction of E_{max}
- Lower cosmic-ray pressure
- Weaker cosmic-ray feedback
- Escape from far downstream
- High-energy spectrum is soft

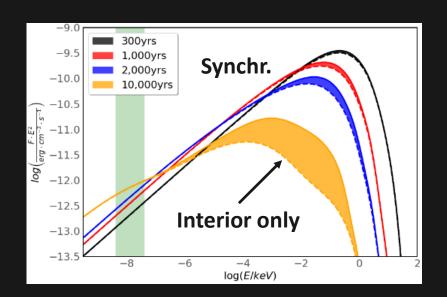
Such soft input spectra are needed for Galactic cosmic-ray propagation

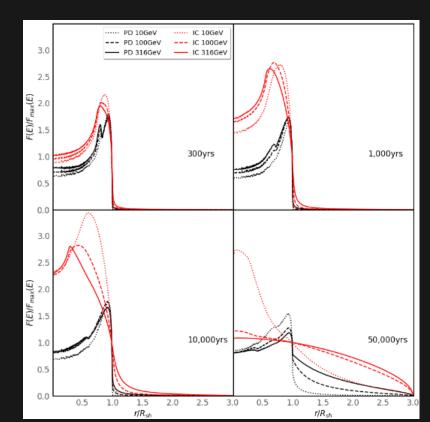

Supernova remnants

Time-dependent gamma-ray spectra

Gamma-ray spectra of SNR are generally soft at high energy

Fits data very well




Magnetic turbulence

Appearance of haloes in source morphology

Brose et al. (2021)

Summary turbulence

Non-relativistic shocks in SNR

- Properties and spatial distribution of turbulence are important
- Steady state is probably not reached
- Particle spectra softer than in time-independent models

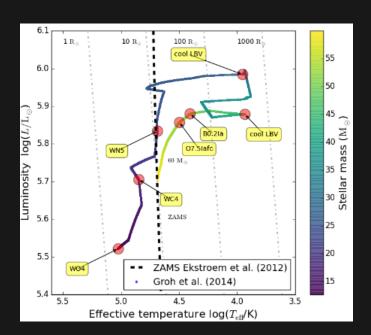
Wind bubble

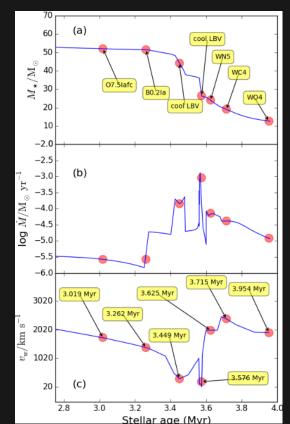
The progenitor star goes through various evolutionary phases

The sequence of evolution depends on the initial stellar mass

The wind bubble reflects this evolution

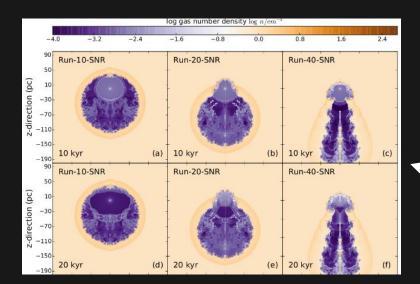
Emission from the SNR is brightest early


Most GeV-scale cosmic rays are produced late in the evolution

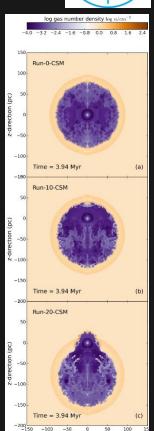


Wind bubble

A nonrotating 60-M_s star

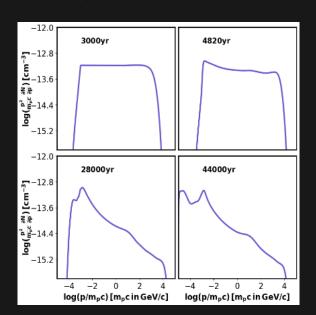


Wind bubble, 60 M_s


Now allow motion of progenitor

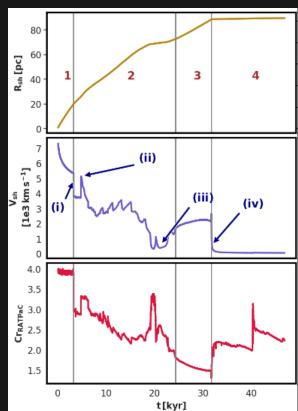
Meyer et al. (2020)

Before SN



Wind bubble, 60 M_s

Acceleration model in spherical symmetry Simplified diffusion model

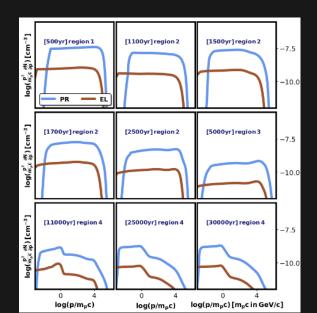


In shocked wind

Low compression

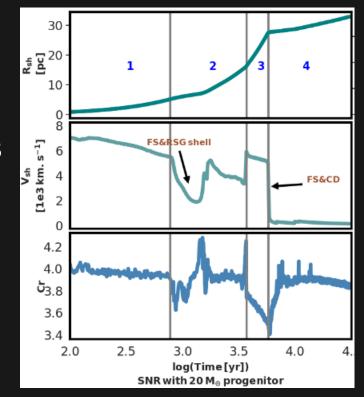
Soft particle spectra

Das et al. (2022)



Wind bubble, 20 M_s

Same for lower-mass star but with turbulence transport



Transient bumps

Soft spectra late

In ISM low E_{max}

Das et al., in prep.

Summary Wind bubble

Wind bubbles affect

- the morphology of the SNR
- Spherical symmetry only for static progenitor
- Effect depends on stellar evolution
- Soft particle spectra in shocked wind and in ISM

Summary Part III

- Particle acceleration at reverse shock relevant only initially
- Build-up of turbulence far upstream required
- Later turbulence driving slow → reduction in E_{max}
- Wind bubble structure introduces phases of CR acceleration
- Soft particle spectra in hot shocked wind possible