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• Largely derived from: 
• University of Toronto CSC411 - Introduction to Machine Learning (Fall 2016).  

See: http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html  
• MIT's introductory course on deep learning - MIT 6.S191 - http://introtodeeplearning.com/  
• Lecture playlist - https://www.youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI 

• Intro 
• Regression 
• Classification 
• Algorithms: 

• Nearest neighbours 
• Decision trees 
• Ensembles  

• Physics example
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• How can we solve a specific problem? 
• Write a program that encodes a set of rules that are useful to solve the problem. 
• In many cases is very difficult to specify those rules, e.g., given a  picture determine 

whether there is a cat in the image 

What is Machine Learning? 
What is Machine Learning?

How can we solve a specific problem?

I As computer scientists we write a program that encodes a set of rules
that are useful to solve the problem

I In many cases is very di�cult to specify those rules, e.g., given a
picture determine whether there is a cat in the image

Learning systems are not directly programmed to solve a problem, instead
develop own program based on:

I Examples of how they should behave
I From trial-and-error experience trying to solve the problem

Di↵erent than standard CS:

I Want to implement unknown function, only have access e.g., to sample
input-output pairs (training examples)

Learning simply means incorporating information from the training examples
into the system

Zemel, Urtasun, Fidler (UofT) CSC 411: 01-Introduction 16 / 44

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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What makes a 2? 
Tasks that requires machine learning: What makes a 2?

Zemel, Urtasun, Fidler (UofT) CSC 411: 01-Introduction 17 / 44

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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• It is very hard to write programs that solve problems like recognising a handwritten digit: 
• What distinguishes a 2 from a 7?  
• How does our brain do it?  

• Instead of writing a program by hand, we collect examples that specify the correct 
output for a given input. 

• A machine learning algorithm then takes these examples and produces a program that 
does the job: 

• The program produced by the learning algorithm may look very different from a typical 
hand written program. It may contain millions of numbers.  

• If we do it right, the program works for new cases as well as the ones we trained it on, 
but only under limited conditions…

What is Machine Learning? 

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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• Classification: determine which discrete category the example belongs to 
• Recognising patterns: speech recognition, facial identity, etc  
• Recognising anomalies: unusual sequences of credit card transactions, panic situation 

at an airport 
• Recommender Systems: noisy data, commercial pay-off (e.g., Amazon, Netflix).  
• Information retrieval: find documents or images with similar content  
• Computer vision: detection, segmentation, depth estimation, optical flow, etc  
• Robotics: perception, planning, etc  
• Learning to play games  
• Spam filtering, fraud detection: the enemy adapts so we must adapt too  

• ... Many more …

Types of ML tasks

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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A few concrete examples ➜ Classification
Examples of Classification

What digit is this?

Zemel, Urtasun, Fidler (UofT) CSC 411: 01-Introduction 21 / 44

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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Classification
Examples of Classification

Is this a dog?

Zemel, Urtasun, Fidler (UofT) CSC 411: 01-Introduction 21 / 44

Examples of Classification

what about this one?

Zemel, Urtasun, Fidler (UofT) CSC 411: 01-Introduction 21 / 44

Examples of Classification

Do I have diabetes?

Zemel, Urtasun, Fidler (UofT) CSC 411: 01-Introduction 21 / 44

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html


10

Pattern recognition

Examples of Recognizing patterns

Figure: Siri: https://www.youtube.com/watch?v=8ciagGASro0

Zemel, Urtasun, Fidler (UofT) CSC 411: 01-Introduction 23 / 44

Examples of Recognizing patterns

Figure: Photomath: https://photomath.net/

Zemel, Urtasun, Fidler (UofT) CSC 411: 01-Introduction 23 / 44

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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Recommendation systemExamples of Recommendation systems

Zemel, Urtasun, Fidler (UofT) CSC 411: 01-Introduction 25 / 44UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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Computer visionComputer Vision

Zemel, Urtasun, Fidler (UofT) CSC 411: 01-Introduction 29 / 44

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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Playing games

Playing Games: Super Mario

Figure: Video: https://www.youtube.com/watch?v=wfL4L_l4U9A

Zemel, Urtasun, Fidler (UofT) CSC 411: 01-Introduction 35 / 44

Playing Games: Alpha Go

Zemel, Urtasun, Fidler (UofT) CSC 411: 01-Introduction 36 / 44

• Learning to play Super Mario: 
https://www.youtube.com/watch?v=wfL4L_l4U9A 

• Learning to play Alpha Go:

UofT - CSC411 (2016) 

https://www.youtube.com/watch?v=wfL4L_l4U9A
http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html


14

Generating images  
from natural language

UofT - CSC411 (2016) 

• "An astronaut 
riding a horse"

• "Two cats doing 
research"• "Painting of a capybara 

sitting in a field at sunrise"

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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Large language models

https://openai.com/blog/chatgpt/ 

• ChatGPT 
(2023)

https://openai.com/blog/chatgpt/
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• ChatGPT 
(2023)

Large language models

https://openai.com/blog/chatgpt/
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• ChatGPT (July 2024)

Large language models

https://chatgpt.com/
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• ChatGPT (July 2025)

Large language models

https://openai.com/blog/chatgpt/
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Programming assistant 

https://github.com/features/copilot 

• Copilot

https://github.com/features/copilot
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• Supervised: correct output known for each training example - Learn to predict output when 
given an input vector: 

• Classification: 1-of-N output (speech recognition, object recognition, medical diagnosis)  
• Regression: real-valued output (predicting market prices, customer rating)  

• Unsupervised learning: 
• Create an internal representation of the input, capturing regularities/structure in data  
• Examples: form clusters; extract features ➜ How do we know if a representation is good?  

• Generative models: 
• Generate data similar to the data on which they are trained 

• GAN (generative adversarial network) ➜ via adversarial training 
• VAE (variational autoencoder) ➜ via dimensionality reduction 
• Diffusion models ➜ e.g., running a learned denoising process in reverse 
• ...

ML techniques

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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• Continuous outputs, we’ll call these t  
• For example: a rating; a real number between 0-10; # of followers; house prices in 

some region; ... 
• Predicting continuous outputs is called regression  
• What do I need in order to predict these outputs?  

• Features (inputs), we’ll call these x 
• Training examples, many x for which t is known 

• For example: for how many movies do we already have a reliable rating 
• A model, a function that represents the relationship between x and t  
• A loss or a cost or an objective function, which tells us how well our  

model approximates the training examples  
• Optimisation, a way of finding the parameters of our model that minimises the loss 

function (reduces differences between truth and model-predictions)

Regression

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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• A simple model typically does not exactly fit the data ➜ low fit-power can be considered 
as noise  

• Sources of noise:  
• Imprecision in data attributes  

• Uncertainty on inputs 
• Example for house pricing: imprecise estimation of neighbourhood quality; 

wrong specification of amenities 
• Errors in data targets 

• Mis-labelling 
• Example for house pricing: house labelled as apartment 

• Additional attributes not taken into account by data attributes, which still affect target 
values (missing latent variables). 

• Model may be too simple to account for data targets

Noise

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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• What type of model did we choose? 
• Divide the dataset into training and testing examples: 

• Use the training examples to construct hypothesis, or function approximator, that maps 
x to predicted y 

• Evaluate hypothesis on test set

Regression

Simple 1-D regression

Key Questions:

I How do we parametrize the model?

I What loss (objective) function should we use to judge the fit?

I How do we optimize fit to unseen test data (generalization)?

Zemel, Urtasun, Fidler (UofT) CSC 411: 02-Regression 6 / 22

Example: Boston Housing data

Estimate median house price in a neighborhood based on neighborhood
statistics

Look at first possible attribute (feature): per capita crime rate

Use this to predict house prices in other neighborhoods

Is this a good input (attribute) to predict house prices?

Zemel, Urtasun, Fidler (UofT) CSC 411: 02-Regression 7 / 22

• Example: house price 
prediction by per-capita 
crime rate: 

• Is this a good feature? 
• Would it generalise to 

other neighbourhoods?

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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Linear regression Which Fit is Best?

from Bishop 

Zemel, Urtasun, Fidler (UofT) CSC 411: 02-Regression 17 / 22

• Improve the fit by increasing model complexity 
• May result in loss of predictive power ➜ 

overfitting; model no longer generalisable 
• One way of dealing with this is to “encourage” 

the weights to be small (this way no input 
dimension will have too much influence on 
prediction) ➜ regularisation  

• Since we are minimising the loss, the second 
term (α) will encourage smaller values for 
weights, w

Regularized least squares

Better generalization

Choose ↵ carefully

Zemel, Urtasun, Fidler (UofT) CSC 411: 02-Regression 20 / 22

Regularized Least Squares

Increasing the input features this way can complicate the model considerably

Goal: select the appropriate model complexity automatically

Standard approach: regularization

˜̀(w) =
NX

n=1

[t(n) � (w0 + w1x
(n))]2 + ↵wTw

Intuition: Since we are minimizing the loss, the second term will encourage
smaller values in w

When we use the penalty on the squared weights we have ridge regression in
statistics

Leads to a modified update rule for gradient descent:

w w + 2�[
NX

n=1

(t(n) � y(x (n)))x (n) � ↵w]

Also has an analytical solution: w = (XTX+ ↵ I)�1XT t (verify!)

Zemel, Urtasun, Fidler (UofT) CSC 411: 02-Regression 19 / 22
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UofT - CSC411 (2016) 

Update rule for gradient decent:

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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• Categorical outputs, called labels (eg, yes/no, dog/cat/person/other)  
• Assigning each input vector to one of a finite number of labels is called classification: 

• Binary classification: two possible labels (eg, yes/no, 0/1, cat/dog) 
• Multi-class classification: multiple possible labels

Classification

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html


Classification as Regression

One dimensional example (input x is 1-dim)

Classification

Classification as regression: example

A 1D example:

x

y

+1

-1
w0 +wTx

ŷ = �1ŷ = +1

Greg Shakhnarovich (TTIC) Lecture 5: Regularization, intro to classification October 15, 2013 11 / 15

The colors indicate labels (a blue plus denotes that t(i) is from the first
class, red circle that t(i) is from the second class)

Zemel, Urtasun, Fidler (UofT) CSC 411: 03-Classification 7 / 24
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Classification - 1d example

UofT - CSC411 (2016) 

• Colours indicate labels:

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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Classification - 1d example

Decision Rules

Our classifier has the form

f (x,w) = wo +wTx

A reasonable decision rule is

y =

(
1 if f (x,w) � 0

�1 otherwise

How can I mathematically write this rule?

y(x) = sign(w0 +wTx)

What does this function look like?

Zemel, Urtasun, Fidler (UofT) CSC 411: 03-Classification 8 / 24

• Try the same strategy as for 
linear regression ➜ Formulate 
a decision rule:

Decision Rules

Our classifier has the form

f (x,w) = wo +wTx

A reasonable decision rule is

y =

(
1 if f (x,w) � 0

�1 otherwise

How can I mathematically write this rule?

y(x) = sign(w0 +wTx)

What does this function look like?

Zemel, Urtasun, Fidler (UofT) CSC 411: 03-Classification 8 / 24

UofT - CSC411 (2016) 

• Colours indicate labels:

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html


• Colours indicate labels:
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Classification - 2d / 3d
Example in 2D

The linear classifier has a linear boundary (hyperplane)

w0 +wTx = 0

which separates the space into two ”half-spaces”

In 2D this is a line

Zemel, Urtasun, Fidler (UofT) CSC 411: 03-Classification 11 / 24

Example in 3D

The linear classifier has a linear boundary (hyperplane)

w0 +wTx = 0

which separates the space into two ”half-spaces”

In 3D this is a plane

What about higher-dimensional spaces?

Zemel, Urtasun, Fidler (UofT) CSC 411: 03-Classification 12 / 24

• Decision boundary: 

• Possible loss function:

Loss functions

A possible loss to minimize is the zero/one loss

L(y(x), t) =

(
0 if y(x) = t

1 if y(x) 6= t

Is this minimization easy to do? Why?

Zemel, Urtasun, Fidler (UofT) CSC 411: 03-Classification 16 / 24

Loss functions

Classifying using a linear decision boundary reduces the data dimension to 1

y(x) = sign(w0 +wTx)

What is the cost of being wrong?

Loss function: L(y , t) is the loss incurred for predicting y when correct
answer is t

For medical diagnosis: For a diabetes screening test is it better to have false
positives or false negatives?

For movie ratings: The ”truth” is that Alice thinks E.T. is worthy of a 4.
How bad is it to predict a 5? How about a 2?

Zemel, Urtasun, Fidler (UofT) CSC 411: 03-Classification 15 / 24

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html


Example in 3D

The linear classifier has a linear boundary (hyperplane)

w0 +wTx = 0

which separates the space into two ”half-spaces”

In 3D this is a plane

What about higher-dimensional spaces?

Zemel, Urtasun, Fidler (UofT) CSC 411: 03-Classification 12 / 24

• More complicated loss functions:

31

Classification - 2d / 3d
Other Loss functions

Zero/one loss for a classifier

L0�1(y(x), t) =

(
0 if y(x) = t

1 if y(x) 6= t

Asymmetric Binary Loss

LABL(y(x), t) =

8
><

>:

↵ if y(x) = 1 ^ t = 0

� if y(x) = 0 ^ t = 1

0 if y(x) = t

Squared (quadratic) loss

Lsquared (y(x), t) = (t � y(x))2

Absolute Error
Labsolute(y(x), t) = |t � y(x)|

Zemel, Urtasun, Fidler (UofT) CSC 411: 03-Classification 17 / 24

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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Classification - performance evaluation
Metrics

How to evaluate how good my classifier is? How is it doing on dog vs no-dog?

Zemel, Urtasun, Fidler (UofT) CSC 411: 03-Classification 21 / 24
UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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Classification - performance evaluation

Metrics

How to evaluate how good my classifier is?

Recall: is the fraction of relevant instances that are retrieved

R =
TP

TP + FN
=

TP

all groundtruth instances

Precision: is the fraction of retrieved instances that are relevant

P =
TP

TP + FP
=

TP

all predicted

F1 score: harmonic mean of precision and recall

F1 = 2
P · R
P + R

Zemel, Urtasun, Fidler (UofT) CSC 411: 03-Classification 22 / 24

More on Metrics

How to evaluate how good my classifier is?

Precision: is the fraction of retrieved instances that are relevant

Recall: is the fraction of relevant instances that are retrieved

Precision Recall Curve

Average Precision (AP): mean under the curve

Zemel, Urtasun, Fidler (UofT) CSC 411: 03-Classification 23 / 24

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html


Example in 3D

The linear classifier has a linear boundary (hyperplane)

w0 +wTx = 0

which separates the space into two ”half-spaces”

In 3D this is a plane

What about higher-dimensional spaces?

Zemel, Urtasun, Fidler (UofT) CSC 411: 03-Classification 12 / 24

• Replace the binary function y(x) with a non linear 
function:

34

Classification - Logistic regression

Logistic Regression

An alternative: replace the sign(·) with the sigmoid or logistic function

We assumed a particular functional form: sigmoid applied to a linear
function of the data

y(x) = �
�
wTx+ w0

�

where the sigmoid is defined as

�(z) =
1

1 + exp(�z)

0 

0.5 

0 

1 

The output is a smooth function of the inputs and the weights. It can be
seen as a smoothed and di↵erentiable alternative to sign(·)

Zemel, Urtasun, Fidler (UofT) CSC 411: 04-Prob Classif 3 / 22
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• The output is a smooth function of the inputs and 
the weights. It can be seen as a smoothed and 
differentiable alternative to [ y(x) = 0 or 1 ]. 

• Can be used to model a class probability.

UofT - CSC411 (2016) 

Sigmoid function

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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Classification - Logistic regression

UofT - CSC411 (2016) 

Activation Functions

Most commonly used activation functions:

Sigmoid: �(z) = 1
1+exp(�z)

Tanh: tanh(z) = exp(z)�exp(�z)
exp(z)+exp(�z)

ReLU (Rectified Linear Unit): ReLU(z) = max(0, z)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 9 / 62
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Classification - Logistic regression
Logistic Regression vs Least Squares Regression

If the right answer is 1 and the 
model says 1.5, it loses, so it 
changes the boundary to avoid 
being “too correct” (tilts away 
from outliers) 

logistic 
regression 

least squares 
regression 

33 

Zemel, Urtasun, Fidler (UofT) CSC 411: 04-Prob Classif 8 / 22

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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Classification - Conditional likelihood
Conditional Likelihood

Assume t 2 {0, 1}, we can write the probability distribution of each of our
training points p(t(1), · · · , t(N)|x(1), · · · x(N);w)

Assuming that the training examples are sampled IID: independent and
identically distributed, we can write the likelihood function:

L(w) = p(t(1), · · · , t(N)|x(1), · · · x(N);w) =
NY

i=1

p(t(i)|x(i);w)

We can write each probability as (will be useful later):

p(t(i)|x(i);w) = p(C = 1|x(i);w)t
(i)

p(C = 0|x(i);w)1�t(i)

=
⇣
1� p(C = 0|x(i);w)

⌘t(i)

p(C = 0|x(i);w)1�t(i)

We can learn the model by maximizing the likelihood

max
w

L(w) = max
w

NY

i=1

p(t(i)|x(i);w)

Easier to maximize the log likelihood log L(w)
Zemel, Urtasun, Fidler (UofT) CSC 411: 04-Prob Classif 11 / 22 UofT - CSC411 (2016) 
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Non-parametric models
• Alternative to parametric models are non-

parametric models 
• These are typically simple methods for 

approximating discrete-valued or real-valued target 
functions (they work for classification or regression 
problems)  

• Learning amounts to simply storing training data 
• Test instances classified using similar training 

instances 
• Embodies often sensible underlying assumptions:  

• Output varies smoothly with input  
• Data occupies sub-space of high-dimensional 

input space

Classification as Induction

Zemel, Urtasun, Fidler (UofT) CSC 411: 05-Nearest Neighbors 6 / 22

Classification: Oranges and Lemons

Can$construct$simple$
linear$decision$
boundary:$$$$
$$$y$=$sign(w0$+$w1x1$$$$$$$$$$$$$$$$$$$

$$$$$$$$+$w2x2)$

Zemel, Urtasun, Fidler (UofT) CSC 411: 05-Nearest Neighbors 4 / 22

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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Non-parametric models - nearest neighbours
• A natural way to generate selection boundaries. 
• The value of the target function for a new query is 

estimated from the known value(s) of the 
nearest training example(s) 

• Distance typically defined to be Euclidean 
 
 
 
 
 
(but doesn’t have to be…)

Classification as Induction

Zemel, Urtasun, Fidler (UofT) CSC 411: 05-Nearest Neighbors 6 / 22

Classification: Oranges and Lemons

Can$construct$simple$
linear$decision$
boundary:$$$$
$$$y$=$sign(w0$+$w1x1$$$$$$$$$$$$$$$$$$$

$$$$$$$$+$w2x2)$

Zemel, Urtasun, Fidler (UofT) CSC 411: 05-Nearest Neighbors 4 / 22

Nearest Neighbors

Training example in Euclidean space: x 2 <d

Idea: The value of the target function for a new query is estimated from the
known value(s) of the nearest training example(s)

Distance typically defined to be Euclidean:

||x(a) � x(b)||2 =

vuut
dX

j=1

(x (a)j � x
(b)
j )2

Algorithm:

1. Find example (x⇤, t⇤) (from the stored training set) closest to
the test instance x. That is:

x⇤ = argmin
x(i)2train. set

distance(x(i), x)

2. Output y = t
⇤

Note: we don’t really need to compute the square root. Why?
Zemel, Urtasun, Fidler (UofT) CSC 411: 05-Nearest Neighbors 8 / 22

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html


Nearest Neighbors: Decision Boundaries

Nearest neighbor algorithm does not explicitly compute decision boundaries,
but these can be inferred

Decision boundaries: Voronoi diagram visualization
I show how input space divided into classes
I each line segment is equidistant between two points of opposite classes

Zemel, Urtasun, Fidler (UofT) CSC 411: 05-Nearest Neighbors 9 / 22

Nearest Neighbors: Decision Boundaries

Example: 2D decision boundary
Zemel, Urtasun, Fidler (UofT) CSC 411: 05-Nearest Neighbors 10 / 22
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Nearest neighbours ➜ decision boundary
• Decision boundaries visualised with a Voronoi diagram (cells include every point in the plane 

whose distance to a given point is less than or equal to its distance to any other): 
• Shows how input space is divided into classes 
• Each line segment is equidistant between two points of opposite classes

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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k-Nearest neighbours (kNN)
• Number of nearest neighbours to 

consider (k) is a hyper-parameter 
of the algorithm.

k-Nearest Neighbors

[Pic by Olga Veksler]

Nearest neighbors sensitive to mis-labeled data (“class noise”). Solution?

Smooth by having k nearest neighbors vote

Algorithm (kNN):

1. Find k examples {x(i), t(i)} closest to the test instance x
2. Classification output is majority class

y = arg max
t(z)

kX

r=1

�(t(z), t(r))

Zemel, Urtasun, Fidler (UofT) CSC 411: 05-Nearest Neighbors 13 / 22
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UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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• Which k to choose? 
• Expensive at test time: To find one nearest neighbour of a query point x, we must 

compute the distance to all N training examples. ➜ Complexity: O(kdN) for kNN  
• Use subset of dimensions 
• Pre-sort training examples into fast data structures (e.g., kd-trees)  
• Compute only an approximate distance  
• Remove redundant data (e.g., condensing)  

• Storage Requirements: Must store all training data  
• Remove redundant data (e.g., condensing)  
• Pre-sorting often increases the storage requirements 

• High Dimensional Data: “Curse of Dimensionality”  
• Required amount of training data increases exponentially with dimension  
• Computational cost also increases

Issues with kNN

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html


Decision Trees



46

Decision Trees

Another Classification Idea

Gives axes aligned decision boundaries

Zemel, Urtasun, Fidler (UofT) CSC 411: 06-Decision Trees 4 / 39

Another Classification Idea

Gives axes aligned decision boundaries

Zemel, Urtasun, Fidler (UofT) CSC 411: 06-Decision Trees 4 / 39

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html


Expressiveness

Discrete-input, discrete-output case:
I Decision trees can express any function of the input attributes
I E.g., for Boolean functions, truth table row ! path to leaf:

Continuous-input, continuous-output case:
I Can approximate any function arbitrarily closely

Trivially, there is a consistent decision tree for any training set w/ one path
to leaf for each example (unless f nondeterministic in x) but it probably
won’t generalize to new examples

Need some kind of regularization to ensure more compact decision trees

[Slide credit: S. Russell]

Zemel, Urtasun, Fidler (UofT) CSC 411: 06-Decision Trees 12 / 39
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Decision Trees

Another Classification Idea

Gives axes aligned decision boundaries

Zemel, Urtasun, Fidler (UofT) CSC 411: 06-Decision Trees 4 / 39

• Classification tree: 
• Discrete output  
• Leaf value typically set to the most common 

value in  {t(m1),...,t(mk)}  
• Regression tree: 

• Continuous output  
• Leaf value y typically set to the mean value 

in {t(m1), . . . , t(mk )}  

• Discrete example:

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html


Which Tree is Better?

Zemel, Urtasun, Fidler (UofT) CSC 411: 06-Decision Trees 31 / 39
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Which tree is better?

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html


Which Tree is Better?

Zemel, Urtasun, Fidler (UofT) CSC 411: 06-Decision Trees 31 / 39
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• Tree complexity: 
• Not too small:  

• Need to handle important but possibly 
subtle distinctions in data  

• Not too big:  
• Computational efficiency (avoid 

redundant, spurious attributes)  
• Avoid over-fitting training examples 

• ➜ Occam’s Razor: find the simplest 
hypothesis (smallest tree) that fits the 
observations 

• Inductive bias: small trees with informative 
nodes near the root 

Which tree is better?

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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Ensemble methods 

UofT - CSC411 (2016) 

• Ensemble of estimators is a set of regressors/classifiers whose individual decisions are 
combined in some way to classify new examples  

• Simplest approach:  
• Generate multiple classifiers 
• Each votes on test instance 
• Take majority as classification  

• Classifiers are different due to different sampling of training data, or randomised 
parameters within the classification algorithm  

• ➜ take simple mediocre algorithm and transform it into a super-classifier without requiring 
any fancy new algorithm

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
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Ensemble methods 

UofT - CSC411 (2016) 

• Differ in training strategy, and combination method  
• Parallel training with different training sets 

• Bagging (bootstrap aggregation): train separate models on  
overlapping training sets, average their predictions  

• Parallel training with objective encouraging division of labor: mixture of experts 
• Sequential training: 

• Boosting: iteratively re-weighting training examples so current estimator focuses on 
hard examples 

• Typically applied to weak models, such as decision stumps (single-node decision 
trees), or linear classifiers ➜ boosted decision trees (BDT)  

• ➜ minimise two sets of errors: 
• Variance: error from sensitivity to small fluctuations in the training set  
• Bias: erroneous assumptions in the model 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html


AdaBoost Example

Round 1

[Slide credit: Verma & Thrun]

Zemel, Urtasun, Fidler (UofT) CSC 411: 17-Ensemble Methods I 21 / 34
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AdaBoost Example 

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html


AdaBoost Example

Round 2

[Slide credit: Verma & Thrun]

Zemel, Urtasun, Fidler (UofT) CSC 411: 17-Ensemble Methods I 22 / 34
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AdaBoost Example 

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html


AdaBoost Example

Round 3

[Slide credit: Verma & Thrun]

Zemel, Urtasun, Fidler (UofT) CSC 411: 17-Ensemble Methods I 23 / 34
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AdaBoost Example 

UofT - CSC411 (2016) 

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html


56

AdaBoost Example 

UofT - CSC411 (2016) 

AdaBoost Example

Final classifier

[Slide credit: Verma & Thrun]
Zemel, Urtasun, Fidler (UofT) CSC 411: 17-Ensemble Methods I 24 / 34
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The dark energy survey (DES)

https://www.darkenergysurvey.org/multimedia/photo-gallery/
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Optical bands / magnitudes

Sadeh et al (2016) arxiv:1507.00490 

Basics of a photometric galaxy surveyBasics of a photometric galaxy survey

⌘ Terminology - ⇤ magnitude: mg ⌘ C � Log(fg).
⇤ colour: cgr ⌘mg �mr, with some constant, C , and flux in
band g. ⌘ Integrate flux over some wavelength range using
filters.

15 / 52

https://arxiv.org/abs/1507.00490
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Galaxy redshift estimation

Sadeh et al (2016) arxiv:1507.00490 
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Fig. 3.— Properties of galaxies in the dataset used for the toy photo-z analysis. (a) : Differential distribution of the
spectroscopic redshift, zspec. (b) : Differential distributions of the magnitudes in five bands, mu, mg, mr, mi and mz, as
indicated. (c)-(e) : Correlation between different colour combinations, as indicated, where the size of a box represents
the relative number-density of entries within the respective histogram bin, compared to the entire distribution.
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• Machine learning for 
parameter estimation for 
an optical survey (DES): 

• Regression target is z, 
the redshift of a galaxy. 

• Features are optical 
magnitudes, m, in 5 bands.

https://arxiv.org/abs/1507.00490


Randomized regressionRandomized regression

⌘ Train multiple ANNs with di�erent parameters (neuron and layer
layout, initial random seed etc.) ⌘ average scatter (�68) vs. average
outlier fraction for 2 and 3�68 (f (2,3�68)). Here comparing di�.
numbers of training galaxies (Ntrain = 500! 50,000).
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⌘ Not much improvement for more than ⇠ 5,000 galaxies...
⌘ The optimization (based on the training sample), has the expected
e�ect on the validation sample.
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Galaxy redshift estimation

Sadeh et al (2016) arxiv:1507.00490 

• Train an ensemble of estimators: 
• Derive single-best estimator based on optimisation criteria (on bias and variance). 
• Combine all estimators together with uncertainties and derive a probability density 

function (PDF).

https://arxiv.org/abs/1507.00490
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Galaxy redshift estimation

Sadeh et al (2016) arxiv:1507.00490 
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Fig. 5.— Properties of the photo-z solution of ANNz2, derived using a single ANN, as described in the text. (a) : Cor-
relation between the spectroscopic and the photometric redshift, respectively zspec and zphot. (b) : The photo-z bias,
δb, calculated in bins of either zspec or zphot, as indicated. (c) : The photo-z scatter, calculated as either the standard
deviation or as the 68th percentile of the distribution of the bias, respectively σb and σ68,b, calculated in bins of either
zspec or zphot, as indicated. (d) : The photo-z outlier fraction, fb(ασ68), using α = 2 or 3, calculated in bins of either
zspec or zphot, as indicated. The lines in (b) - (d) are meant to guide the eye.
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• Evaluate performance as a 
function of true redshift, bias, 
scatter (variance of bias), and 
outlier fractions.

https://arxiv.org/abs/1507.00490


Let us consider a photo-z PDF which correctly de-
scribes the underlying redshift distribution. In this
case, one may think of zspec as a random variable which
is distributed according to the PDF. It then follows
that C would be a flat distribution. As further illus-
tration, one may imagine the inverse problem. Suppos-
ing we generate a collection of random numbers, uni-
formly distributed between 0 and 1. We then use these
to calculate C−1, the inverse of the CDF (the quantile
function). In this case, the distribution of C−1 values
would correspond to redshifts; it should then recover
our PDF, assuming the PDF correctly represents the
underlying uncertainty on our photo-z inference.

The CDF of redshifts has previously been used to
constrain photo-z PDFs, as e.g., in Bordoloi et al.
(2010). There it was the basis for modifying PDFs
which were constructed from likelihood functions, as
part of a template fitting algorithm. In ANNz2, C is used
for the initial derivation procedure of the PDF. This
is done by selecting from the collection of candidate-
PDFs, the solution for which C is as close as possible
to a uniform distribution.

4.4. Representativeness and completeness of
the training sample

Up to this point, we have discussed how the uncer-
tainty on input parameters and the differences between
specific MLMs are treated in ANNz2. However, machine
learning methods based on training are susceptible to
additional systematic effects. Two possible sources of
major bias come about for training datasets which are
not representative or are not complete.

One possible source of bias is the exact composition
of the training dataset. Let us consider an evaluated
object from a photometric dataset, for which we have
comparable training objects. It is then important that
the relative fraction of these training objects within
the training sample be the same as in the photometric
dataset. If this is not the case, the training sample is
usually referred to as unrepresentative.

In order to illustrate the point, a simple example is
shown in Fig. 7. The figure includes the distributions
of the r-band magnitude, mr, of objects in hypothetical
training and reference samples. The latter represents
a complete and unbiased representation of the mr of
galaxies for some survey. In this case, the distribution
of mr in the training dataset is quite different from that
in the reference sample. An MLM trained using this
training dataset will e.g., give too high significance to
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Fig. 7.— Differential distributions of the r-band mag-
nitude, mr, of objects in three samples, as indicated;
the reference sample, which corresponds to a hypothet-
ical survey; the original training sample, which is some
spectroscopic dataset which is available for training an
MLM; the weighted training sample, which corresponds
to the original training sample, after weights have been
applied, as described in the text.

training examples with mr values close to 19.

The problem may be alleviated by reweighting the
training sample. The purpose of the weights is to as-
sign a correction factor to galaxies as a function of the
input parameters. The weighted distribution of galax-
ies should be such, that the relative fraction of objects
in each region in the parameter space is the same as in
the reference sample. These weights are then used as
part of the training; they are also further propagated
to the metric calculations, to be used during the PDF
optimization phase. The reweighting procedure is im-
plemented as part of the internal pipeline of ANNz2,
requiring only the definition of the reference dataset by
the user of the code.

The weights are derived by matching the density of
objects in the input parameter space to that in the ref-
erence sample (Lima et al. 2008). This way, all inputs
are reweighted simultaneously, accounting for any in-
trinsic correlations. We derive the weights using a kd-
tree, calculating the number of neighbours of an object
in the training sample within some distance (see Eq. 1).
We then find the number of neighbours of the same
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object within the same distance, but in the reference
sample. The weight is finally taken as the ratio of these
two numbers.

One may notice in Fig. 7 that for mr ! 18.5, the
weighted training dataset does not match the reference
sample. The reason for this, is that the original train-
ing sample does not have any corresponding objects. In
this case, we usually refer to the training dataset as in-
complete. In general, an MLM should only be used on
objects which have features that are represented in the
training dataset. In cases where no training examples
exist, both the photo-z and the corresponding photo-z
uncertainty are equally unreliable.

ANNz2 has a validation mechanism to check whether
an evaluated object falls under an incomplete region of
the training sample. Unfortunately, there is no system-
atic way to correct the photo-z of objects which do not
have comparable training examples. These can instead
be flagged as unreliable.

The algorithm uses a kd-tree to derive the density
of objects from the training sample, which have similar
properties as the evaluated object. We begin by com-

puting R
y/x
NN , the distance in parameter-space between

the evaluated object, x, and the closest corresponding
object from the training sample, y (see Eq. 1). We then

derive Ry/n
NN , the distance from y, within which nmin

NN ob-
jects from the training sample are found. Finally, we
define our quality criteria as

QNN = max

{

0 ,
R

y/n
NN −R

y/x
NN

R
y/n
NN

}

. (4)

The parameter QNN represents a typical distance-
ratio between the evaluated object, and similar train-
ing objects. For dense regions of the training sample,

R
y/x
NN ≪ R

y/n
NN , which corresponds to QNN ∼ 1. Con-

versely, for sparse regions, one would have to search far
away in order to find object-y, resulting in low values
of QNN. The steepness of the distribution of QNN de-
pends on the choice of nmin

NN , and on the properties of
the dataset. We nominally use nmin

NN = 100, though this
parameter may be changed by the user of the code.

The parameterQNN can be used to reject low-fidelity
photo-zs. The exact cut on QNN should be determined
on a case-by-case basis. It should take into account
the fraction of excluded objects, and the relative im-
provement in performance. To illustrate the properties
of QNN, we use the hypothetical training and reference
samples defined for Fig. 7. For the purpose of the ex-
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Fig. 8.— Properties of the quality criteria, QNN (see
Eq. 4), for the hypothetical training and reference sam-
ples used for Fig. 7, where the reference sample is taken
as the evaluated dataset. (a) : Differential distribution
of QNN. (b) : Dependence of the photo-z bias, δb, and
of the 68th percentile scatter, σ68,b, on QNN.
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object within the same distance, but in the reference
sample. The weight is finally taken as the ratio of these
two numbers.

One may notice in Fig. 7 that for mr ! 18.5, the
weighted training dataset does not match the reference
sample. The reason for this, is that the original train-
ing sample does not have any corresponding objects. In
this case, we usually refer to the training dataset as in-
complete. In general, an MLM should only be used on
objects which have features that are represented in the
training dataset. In cases where no training examples
exist, both the photo-z and the corresponding photo-z
uncertainty are equally unreliable.

ANNz2 has a validation mechanism to check whether
an evaluated object falls under an incomplete region of
the training sample. Unfortunately, there is no system-
atic way to correct the photo-z of objects which do not
have comparable training examples. These can instead
be flagged as unreliable.

The algorithm uses a kd-tree to derive the density
of objects from the training sample, which have similar
properties as the evaluated object. We begin by com-

puting R
y/x
NN , the distance in parameter-space between

the evaluated object, x, and the closest corresponding
object from the training sample, y (see Eq. 1). We then

derive Ry/n
NN , the distance from y, within which nmin

NN ob-
jects from the training sample are found. Finally, we
define our quality criteria as

QNN = max

{

0 ,
R

y/n
NN −R

y/x
NN

R
y/n
NN

}

. (4)

The parameter QNN represents a typical distance-
ratio between the evaluated object, and similar train-
ing objects. For dense regions of the training sample,

R
y/x
NN ≪ R

y/n
NN , which corresponds to QNN ∼ 1. Con-

versely, for sparse regions, one would have to search far
away in order to find object-y, resulting in low values
of QNN. The steepness of the distribution of QNN de-
pends on the choice of nmin

NN , and on the properties of
the dataset. We nominally use nmin

NN = 100, though this
parameter may be changed by the user of the code.

The parameterQNN can be used to reject low-fidelity
photo-zs. The exact cut on QNN should be determined
on a case-by-case basis. It should take into account
the fraction of excluded objects, and the relative im-
provement in performance. To illustrate the properties
of QNN, we use the hypothetical training and reference
samples defined for Fig. 7. For the purpose of the ex-
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Fig. 8.— Properties of the quality criteria, QNN (see
Eq. 4), for the hypothetical training and reference sam-
ples used for Fig. 7, where the reference sample is taken
as the evaluated dataset. (a) : Differential distribution
of QNN. (b) : Dependence of the photo-z bias, δb, and
of the 68th percentile scatter, σ68,b, on QNN.
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• Reweighing: make sure the training sample is 
representative of the properties in reality (the 
evaluated sample) 

• Performance evaluation:  
QNN - the typical density of training objects with similar 
properties as the evaluated object
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Questions… ?


