
Introduction to machine learning 2

Iftach Sadeh
August 2025
iftach.sadeh@desy.de

• Largely derived from:
• University of Toronto CSC411 - Introduction to Machine Learning (Fall 2016).

See: http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
• MIT's introductory course on deep learning - MIT 6.S191 - http://introtodeeplearning.com/
• Lecture playlist - https://www.youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI

• Artificial neural nets
• Deep learning

• Convolutional neural networks
• Recurrent neural networks
• Generative models

• Physics example

mailto:iftach.sadeh@desy.de
http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
http://introtodeeplearning.com/
https://www.youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI

2

• We would like to construct non-linear discriminative classifiers that utilise functions of
input variables

• Use a large number of simpler functions:
• If these functions are fixed (Gaussian, sigmoid, polynomial basis functions), then

optimisation still involves linear combinations of (fixed functions of) the inputs
• Or we can make these functions depend on additional parameters ➜ need an efficient

method of training extra parameters

Artificial neural networks (ANN)

UofT - CSC411 (2016)

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html

3

• We would like to construct non-linear discriminative classifiers that utilise functions of
input variables

• Use a large number of simpler functions:
• If these functions are fixed (Gaussian, sigmoid, polynomial basis functions), then

optimisation still involves linear combinations of (fixed functions of) the inputs
• Or we can make these functions depend on additional parameters ➜ need an efficient

method of training extra parameters

Artificial neural networks (ANN)

UofT - CSC411 (2016)

Inspiration: The Brain

Many machine learning methods inspired by biology, e.g., the (human) brain

Our brain has ⇠ 1011 neurons, each of which communicates (is connected)
to ⇠ 104 other neurons

Figure : The basic computational unit of the brain: Neuron

[Pic credit: http://cs231n.github.io/neural-networks-1/]

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 7 / 62

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html

4

• We would like to construct non-linear discriminative classifiers that utilise functions of
input variables

• Use a large number of simpler functions:
• If these functions are fixed (Gaussian, sigmoid, polynomial basis functions), then

optimisation still involves linear combinations of (fixed functions of) the inputs
• Or we can make these functions depend on additional parameters ➜ need an efficient

method of training extra parameters

Artificial neural networks (ANN)

UofT - CSC411 (2016)

Mathematical Model of a Neuron

Neural networks define functions of the inputs (hidden features), computed
by neurons

Artificial neurons are called units

Figure : A mathematical model of the neuron in a neural network

[Pic credit: http://cs231n.github.io/neural-networks-1/]

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 8 / 62

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html

5

ANN activation functions

Mathematical Model of a Neuron

Neural networks define functions of the inputs (hidden features), computed
by neurons

Artificial neurons are called units

Figure : A mathematical model of the neuron in a neural network

[Pic credit: http://cs231n.github.io/neural-networks-1/]

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 8 / 62

Activation Functions

Most commonly used activation functions:

Sigmoid: �(z) = 1
1+exp(�z)

Tanh: tanh(z) = exp(z)�exp(�z)
exp(z)+exp(�z)

ReLU (Rectified Linear Unit): ReLU(z) = max(0, z)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 9 / 62

Activation Functions

Most commonly used activation functions:

Sigmoid: �(z) = 1
1+exp(�z)

Tanh: tanh(z) = exp(z)�exp(�z)
exp(z)+exp(�z)

ReLU (Rectified Linear Unit): ReLU(z) = max(0, z)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 9 / 62

Activation Functions

Most commonly used activation functions:

Sigmoid: �(z) = 1
1+exp(�z)

Tanh: tanh(z) = exp(z)�exp(�z)
exp(z)+exp(�z)

ReLU (Rectified Linear Unit): ReLU(z) = max(0, z)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 9 / 62

Activation Functions

Most commonly used activation functions:

Sigmoid: �(z) = 1
1+exp(�z)

Tanh: tanh(z) = exp(z)�exp(�z)
exp(z)+exp(�z)

ReLU (Rectified Linear Unit): ReLU(z) = max(0, z)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 9 / 62

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Trick #1: activation functions

Using ReLU prevents
!"from shrinking the

gradients when # > 0

ReLU derivative

tanh derivative

sigmoid derivative

Adapted from H. Suresh, 6.S191 2018
UofT - CSC411 (2016) / MIT - 6.S191 (2019)

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
http://introtodeeplearning.com/

6

ANN architecture examples

UofT - CSC411 (2016)

Neural Network Architecture (Multi-Layer Perceptron)

Network with one layer of four hidden units:

output units

input units
Figure : Two di↵erent visualizations of a 2-layer neural network. In this example: 3
input units, 4 hidden units and 2 output units

Naming conventions; a 2-layer neural network:
I One layer of hidden units
I One output layer

(we do not count the inputs as a layer)
[http://cs231n.github.io/neural-networks-1/]

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 12 / 62

Neural Network Architecture (Multi-Layer Perceptron)

Going deeper: a 3-layer neural network with two layers of hidden units

Figure : A 3-layer neural net with 3 input units, 4 hidden units in the first and second
hidden layer and 1 output unit

Naming conventions; a N-layer neural network:

I N � 1 layers of hidden units
I One output layer

[http://cs231n.github.io/neural-networks-1/]

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 13 / 62

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html

7

ANN architecture examples

UofT - CSC411 (2016)

Representational Power

Neural network with at least one hidden layer is a universal approximator
(can represent any function).
Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

The capacity of the network increases with more hidden units and more
hidden layers

Why go deeper? Read e.g.,: Do Deep Nets Really Need to be Deep? Jimmy Ba,
Rich Caruana, Paper: paper]

[http://cs231n.github.io/neural-networks-1/]

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 14 / 62

• An ANN with at least one hidden layer is a universal approximator (can represent any
function)

• The capacity of the network increases with more hidden units and more hidden layers

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html

8

ANN activation & loss functions

UofT - CSC411 (2016)

• Regression ➜ sigmoid activation & mean-square
error (MSE) loss function generally works

Back-propagation: Sketch on One Training Case

Convert discrepancy between each output and its target value into an error
derivative

E =
1

2

X

k

(ok � tk)
2;

@E

@ok
= ok � tk

Compute error derivatives in each hidden layer from error derivatives in layer
above. [assign blame for error at k to each unit j according to its influence
on k (depends on wkj)]

Use error derivatives w.r.t. activities to get error derivatives w.r.t. the
weights.

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 32 / 62

o: Output of neurone
(“after” activation function)

t: True value

Example Application

Classify image of handwritten digit (32x32 pixels): 4 vs non-4

How would you build your network?

For example, use one hidden layer and the sigmoid activation function:

ok(x) =
1

1 + exp(�zk)

zk = wk0 +
JX

j=1

hj(x)wkj

How can we train the network, that is, adjust all the parameters w?

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 19 / 62

E: MSE (“error”)

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html

Multi-class Classification

For multi-class classification problems, use
cross-entropy as loss and the softmax
activation function

E = �
X

n

X

k

t(n)k log o(n)
k

o(n)
k =

exp(z (n)k)
P

j exp(z
(n)
j)

And the derivatives become

@ok
@zk

= ok(1� ok)

@E
@zk

=
X

j

@E
@oj

@oj
@zk

= (ok � tk)ok(1� ok)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 38 / 62

9

ANN activation & loss functions

UofT - CSC411 (2016)

• Regression ➜ sigmoid activation & mean-square
error (MSE) loss function generally works

• Classification for a binary (2-class) problem,
cross-entropy loss:

• Classification for multi-class
problems:

Choosing Activation and Loss Functions

When using a neural network for regression, sigmoid activation and MSE as
the loss function work well

For classification, if it is a binary (2-class) problem, then cross-entropy error
function often does better (as we saw with logistic regression)

E = �
NX

n=1

t(n) log o(n) + (1� t(n)) log(1� o(n))

o(n) = (1 + exp(�z (n))�1

We can then compute via the chain rule

@E

@o
= (o � t)/(o(1� o))

@o

@z
= o(1� o)

@E

@z
=

@E

@o

@o

@z
= (o � t)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 37 / 62

Multi-class Classification

For multi-class classification problems, use
cross-entropy as loss and the softmax
activation function

E = �
X

n

X

k

t(n)k log o(n)
k

o(n)
k =

exp(z (n)k)
P

j exp(z
(n)
j)

And the derivatives become

@ok
@zk

= ok(1� ok)

@E
@zk

=
X

j

@E
@oj

@oj
@zk

= (ok � tk)ok(1� ok)

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 38 / 62

Back-propagation: Sketch on One Training Case

Convert discrepancy between each output and its target value into an error
derivative

E =
1

2

X

k

(ok � tk)
2;

@E

@ok
= ok � tk

Compute error derivatives in each hidden layer from error derivatives in layer
above. [assign blame for error at k to each unit j according to its influence
on k (depends on wkj)]

Use error derivatives w.r.t. activities to get error derivatives w.r.t. the
weights.

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 32 / 62

o: Output of neurone
(“after” activation function)

t: True value

Example Application

Classify image of handwritten digit (32x32 pixels): 4 vs non-4

How would you build your network?

For example, use one hidden layer and the sigmoid activation function:

ok(x) =
1

1 + exp(�zk)

zk = wk0 +
JX

j=1

hj(x)wkj

How can we train the network, that is, adjust all the parameters w?

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 19 / 62

E: MSE (“error”)

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html

10

• Problem:
• The training data contains information about the true patterns in the mapping from input to

output. But it also contains statistical & systematic noise
• The target values may be unreliable
• There are statistical fluctuations ➜ there will be accidental patterns

• ➜ When we fit the model, we end up predicting both true and spurious properties

Overfitting

UofT - CSC411 (2016) / MIT - 6.S191 (2019)
6.S191 Introduction to Deep Learning

introtodeeplearning.com 1/28/19

The Problem of Overfitting

Underfitting
Model does not have capacity

to fully learn the data

Ideal fit Overfitting
Too complex, extra parameters,

does not generalize well

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
http://introtodeeplearning.com/

11

• Problem:
• The training data contains information about the true patterns in the mapping from input to

output. But it also contains statistical & systematic noise
• The target values may be unreliable
• There are statistical fluctuations ➜ there will be accidental patterns

• ➜ When we fit the model, we end up predicting both true and spurious properties
• Solution:

• Use a model that has appropriate complexity
• Enough to model the true regularities
• Not enough to also model the spurious regularities (assuming they are weaker)

• Standard ways to limit the capacity of ANNs
• Limit the number of hidden units
• Limit the size of the weights
• Stop the learning before it begins to overfit

Overfitting

UofT - CSC411 (2016)

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html

12

• Add an extra term (C) to the cost function that penalises (squared) weights
• ➜ Keeps weights small unless they have big error derivatives

• Improves generalisation.
• Prevent fitting fluctuations.
• Smoother model ➜ the output changes more slowly as the input changes.

Limit the size of the weights - weight decay

UofT - CSC411 (2016)

Limiting the size of the Weights

Weight-decay involves adding an extra term to the cost function that
penalizes the squared weights.

C = `+
�

2

X

i

w2
i

Keeps weights small unless they have big error derivatives.

@C

@wi
=

@`

@wi
+ �wi

w

C
when

@C

@wi
= 0, wi = � 1

�

@`

@wi

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 57 / 62

Limiting the size of the Weights

Weight-decay involves adding an extra term to the cost function that
penalizes the squared weights.

C = `+
�

2

X

i

w2
i

Keeps weights small unless they have big error derivatives.

@C

@wi
=

@`

@wi
+ �wi

w

C
when

@C

@wi
= 0, wi = � 1

�

@`

@wi

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 57 / 62

The E↵ect of Weight-decay

It prevents the network from using weights that it does not need

I This can often improve generalization a lot.
I It helps to stop it from fitting the sampling error.
I It makes a smoother model in which the output changes more slowly as

the input changes.

But, if the network has two very similar inputs it prefers to put half the
weight on each rather than all the weight on one ! other form of weight
decay?

w/2 w/2 w 0

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 58 / 62

The E↵ect of Weight-decay

It prevents the network from using weights that it does not need

I This can often improve generalization a lot.
I It helps to stop it from fitting the sampling error.
I It makes a smoother model in which the output changes more slowly as

the input changes.

But, if the network has two very similar inputs it prefers to put half the
weight on each rather than all the weight on one ! other form of weight
decay?

w/2 w/2 w 0

Zemel, Urtasun, Fidler (UofT) CSC 411: 10-Neural Networks I 58 / 62

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html

13

Deep learning

UofT - CSC411 (2016)

Why is it a Problem?

Di�cult scene conditions

[From: Grauman & Leibe]
Zemel, Urtasun, Fidler (UofT) CSC 411: 11-Neural Networks II 4 / 55

• Difficult scene conditions

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html

14

Deep learning

UofT - CSC411 (2016)

Why is it a Problem?

Huge within-class variations. Recognition is mainly about modeling variation.

[Pic from: S. Lazebnik]
Zemel, Urtasun, Fidler (UofT) CSC 411: 11-Neural Networks II 5 / 55

• Difficult scene conditions
• Lots of variation within a given

class

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html

15

Deep learning

UofT - CSC411 (2016)

Why is it a Problem?

Tones of classes

[Biederman]
Zemel, Urtasun, Fidler (UofT) CSC 411: 11-Neural Networks II 6 / 55

• Difficult scene conditions
• Lots of variation within a given

class
• Huge number of classes

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html

16

Deep learning

UofT - CSC411 (2016) https://www.youtube.com/watch?v=uxUTc1N75Kg https://www.youtube.com/watch?
v=PoiHAiDHgDs https://www.youtube.com/watch?v=XbuaUYMwOP8 https://www.youtube.com/watch?v=zZnTy3O7tJs

• Difficulties:
• Segmentation: real scenes are

cluttered
• Invariances: many variations

do not affect nominal shape
• Deformations: natural shape

classes allow variations (faces,
letters, chairs)

• A huge amount of computation

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/CSC411_Fall16.html
https://www.youtube.com/watch?v=uxUTc1N75Kg
https://www.youtube.com/watch?v=PoiHAiDHgDs
https://www.youtube.com/watch?v=PoiHAiDHgDs
https://www.youtube.com/watch?v=XbuaUYMwOP8
https://www.youtube.com/watch?v=zZnTy3O7tJs

Computer vision

18

Deepfake Superman
moustache disaster of 2018

19

Computer vision

MIT - 6.S191 (2019) 6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Images are Numbers
What the computer sees

An image is just a matrix of numbers [0,255]!
i.e., 1080x1080x3 for an RGB image

[1]

http://introtodeeplearning.com/

20

Computer vision

MIT - 6.S191 (2019)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Tasks in Computer Vision

- Regression: output variable takes continuous value
- Classification: output variable takes class label. Can produce probability of belonging to a particular class

Input Image

classification

Lincoln

Washington

Jefferson

Obama

Pixel Representation

0.8

0.1

0.05

0.05

• Regression: output variable takes continuous value
• Classification: output variable takes class label ➜ can produce probability of belonging

to a particular class

http://introtodeeplearning.com/

21

Hierarchy of features

MIT - 6.S191 (2019)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Learning Feature Representations

Can we learn a hierarchy of features directly from the data
instead of hand engineering?

Low level features Mid level features High level features

Eyes, ears, noseEdges, dark spots Facial structure

[3]

http://introtodeeplearning.com/

22

Fully connected layer

MIT - 6.S191 (2019)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Fully Connected Neural Network

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Using Spatial Structure

Connect patch in input layer to a single neuron in subsequent layer.
Use a sliding window to define connections.

How can we weight the patch to detect particular features?

• Apply a set of weights (a filter) to extract local features
• Use multiple filters to extract different features
• Spatially share parameters of each filter
• Example:

• Filter of size 4x4 : 16 different weights
• Apply same filter to 4x4 patches (convolution) in input
• Shift by 2 pixels for next patch

http://introtodeeplearning.com/

23

Convolution

MIT - 6.S191 (2019)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

The Convolution Operation

filter feature map

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

[5]

http://introtodeeplearning.com/

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

filter feature map

[5]

24

Convolution

MIT - 6.S191 (2019)

http://introtodeeplearning.com/

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

filter feature map

[5]

25

Convolution

MIT - 6.S191 (2019)

http://introtodeeplearning.com/

26

Convolution

MIT - 6.S191 (2019)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

filter feature map

[5]

http://introtodeeplearning.com/

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:

filter feature map

[5]

27

Convolution

MIT - 6.S191 (2019)

http://introtodeeplearning.com/

28

Convolution

MIT - 6.S191 (2019)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

CNNs for Classification

1. Convolution: Apply filters with learned weights to generate feature maps.
2. Non-linearity: Often ReLU.
3. Pooling: Downsampling operation on each feature map.

Train model with image data.
Learn weights of filters in convolutional layers.

• Convolution: Apply filters with learned weights to
generate feature maps

• Non-linearity: Often ReLU.
• Pooling: Downsampling operation on each feature map

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Pooling

How else can we downsample and preserve spatial invariance?

1) Reduced dimensionality
2) Spatial invariance

[3]

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/29/19

Pooling

How else can we downsample and preserve spatial invariance?

1) Reduced dimensionality
2) Spatial invariance

[3]

Max-pooling
➜ reduce dim ;

invariance to small-
scale translations

Pooling

Figure : Left: Pooling, right: max pooling example

Hyperparameters of a pooling layer:

The spatial extent F

The stride

[http://cs231n.github.io/convolutional-networks/]

Zemel, Urtasun, Fidler (UofT) CSC 411: 11-Neural Networks II 28 / 55

http://introtodeeplearning.com/

Sequences / time-series analysis

30

Sequences / time-series analysis

MIT - 6.S191 (2019)

• One-hot encoding maps words to eigenvalues:

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Idea #1: use a fixed window

[1 0 0 0 0 0 1 0 0 0]
One-hot feature encoding: tells us what each word is

for a

prediction

given these
two words

predict the
next word

“This morning I took my cat for a walk.”

Adapted from H. Suresh, 6.S191 2018

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Idea #1: use a fixed window

[1 0 0 0 0 0 1 0 0 0]
One-hot feature encoding: tells us what each word is

for a

prediction

given these
two words

predict the
next word

“This morning I took my cat for a walk.”

Adapted from H. Suresh, 6.S191 2018

http://introtodeeplearning.com/

• Information from the distant past is needed in order to make predictions…

• In general, need to:
• Handle variable-length sequences
• Track long-term trends / dependencies
• Maintain information about the order
• Share parameters across the sequence

31

Sequences / time-series analysis

MIT - 6.S191 (2019)
6.S191 Introduction to Deep Learning

introtodeeplearning.com 1/28/19

Problem #1: can’t model long-term dependencies

“France is where I grew up, but I now live in Boston. I speak fluent ___.”

We need information from the distant past to accurately
predict the correct word.

J’aime 6.S191!

Adapted from H. Suresh, 6.S191 2018

http://introtodeeplearning.com/

32

Recurrent neural networks

MIT - 6.S191 (2019)
6.S191 Introduction to Deep Learning

introtodeeplearning.com 1/28/19

Standard feed-forward neural network

One to One
“Vanilla” neural network

!

"#

[1]

http://introtodeeplearning.com/

33

Recurrent neural networks

MIT - 6.S191 (2019)
6.S191 Introduction to Deep Learning

introtodeeplearning.com 1/28/19

Recurrent neural networks: sequence modeling

One to One
“Vanilla” neural network

!

"#

Many to One
Sentiment Classification

[1]

http://introtodeeplearning.com/

34

Recurrent neural networks

MIT - 6.S191 (2019)
6.S191 Introduction to Deep Learning

introtodeeplearning.com 1/28/19

Recurrent neural networks: sequence modeling

One to One
“Vanilla” neural network

!

"#

Many to One
Sentiment Classification

Many to Many
Music Generation

6.S191 Lab!

[1]

http://introtodeeplearning.com/

35

Recurrent neural networks

MIT - 6.S191 (2019)
6.S191 Introduction to Deep Learning

introtodeeplearning.com 1/28/19

Recurrent neural networks: sequence modeling

One to One
“Vanilla” neural network

!

"#

Many to One
Sentiment Classification

Many to Many
Music Generation

… and many other
architectures and

applications

6.S191 Lab!

[1]

http://introtodeeplearning.com/

36MIT - 6.S191 (2019)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

A standard “vanilla” neural network

!"

#$"

input vector

output vector

Recurrent neural networks

http://introtodeeplearning.com/

37MIT - 6.S191 (2019)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

A recurrent neural network (RNN)

Apply a recurrence relation at every
time step to process a sequence:

ℎ" = $% (ℎ"'(, *")
function

parameterized
by W

old state input vector at
time step t

new state

Note: the same function and set of
parameters are used at every time step

RNN

*"

,-"

input vector

recurrent cell

output vector

ℎ"

Recurrent neural networks

http://introtodeeplearning.com/

38MIT - 6.S191 (2019)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

RNNs: computational graph across time

RNN

!"

#$"

= Represent as computational graph unrolled across time

Recurrent neural networks

http://introtodeeplearning.com/

39MIT - 6.S191 (2019)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

RNNs: computational graph across time

RNN

!"

#$"

!%

#$%

=

Recurrent neural networks

http://introtodeeplearning.com/

40MIT - 6.S191 (2019)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

RNNs: computational graph across time

RNN

!"

#$"

!%

#$%

!&

#$&

!'

#$'

!"

#$"

=
…

…

Recurrent neural networks

http://introtodeeplearning.com/

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

RNNs: backpropagation through time

RNN

!"

#$"

!%

#$%

!&

#$&

!'

#$'

!"

#$"

=
…

…

(
(% (& (' ()

Forward pass
Backward pass

*+, *+, *+, *+,

*,- *,- *,- *,-

*,, *,, *,,

[4]

41

Back-propagation through time

MIT - 6.S191 (2019)

• Forward: take derivative of loss for each parameter
• Backward: shift params to minimise loss

http://introtodeeplearning.com/

42

Vanishing gradient problem

MIT - 6.S191 (2019)
6.S191 Introduction to Deep Learning

introtodeeplearning.com 1/28/19

The problem of long-term dependencies
“The clouds are in the ___”

!"

#$"

!%

#$%

!&

#$&

!'

#$'

!(

#$(

!"

#$"

!%

#$%

!)

#$)

!)*%

#$)*%

…

…

Multiply many small numbers together

Errors due to further back time steps
have smaller and smaller gradients

Bias parameters to capture short-term
dependencies

Why are vanishing gradients a problem?

“I grew up in France, … and I l speak fluent___ ”

http://introtodeeplearning.com/

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Long Short Term Memory (LSTMs)
How do LSTMs work?

1) Forget 2) Update 3) Output
ℎ"

tanh

tanh
(")* ("

ℎ"

+"

#
ℎ")*

,"

43

Vanishing gradient problem ➜ Long-short memory units (LSTM)

MIT - 6.S191 (2019)

1. Pass-in the previous (“past”)
state for modification.

2. “Forget” a sub-set of the cell.
3. Update a sub-set of the cell.
4. Derive a filtered output and

an updated cell-state for the
next (“future”) time-step.

1

2
3

4

Inputs

Outputs

Output at given
time-step (cell)

Updated
cell-state

Output from previous
time-step (cell)

Horizontal ➜ memory

Ve
rti

ca
l ➜

 ri
gh

t n
ow

http://introtodeeplearning.com/

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

LSTM gradient flow
Backpropagation from !" to !"#$ requires only elementwise multiplication!

No matrix multiplication à avoid vanishing gradient problem.

ℎ"#$ ℎ"

ℎ"

&"

' ' tanh '

tanh
,"#$,"

!" = ." ∗ !"#$ + 1" ∗ 2!"

[2, 5]
44

Long-short memory units (LSTM)

MIT - 6.S191 (2019)

6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Long Short Term Memory (LSTMs)

LSTM cells are able to track information throughout many timesteps

!"

ℎ"

$ $ tanh $

tanh

!")*

ℎ")*

$ $ tanh $

tanh

!"+*

ℎ"+*

$ $ tanh $

tanh

LSTM repeating modules contain interacting layers that control information flow

[2, 5]Hochreiter & Schmidhuber, 1997

• Use gates to control the flow of information:
• Forget gate gets rid of irrelevant information
• Selectively update cell state
• Output gate returns a filtered version of the cell

state
• Back-propagation from Ct to Ct-1 requires only

element-wise multiplication - No matrix multiplication
➜ avoid vanishing gradient problem.

http://introtodeeplearning.com/

45

LSTMs for machine translation

MIT - 6.S191 (2019) 6.S191 Introduction to Deep Learning
introtodeeplearning.com 1/28/19

Example task: machine translation

the dog eats <start> le chien

mangechienle

Encoder (English) Decoder (French)
[8,9]Adapted from H. Suresh, 6.S191 2018

http://introtodeeplearning.com/

Generative models

47

GAN ➜ generative adversarial network

https://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html

• The generator G is trying hard to trick the discriminator, while the critic model D is trying
hard not to be cheated

https://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html

48

VAE ➜ variational autoencoder

https://lilianweng.github.io/posts/2018-08-12-vae/

• Learn an identity function in an unsupervised way to reconstruct the original input while
compressing the data in the process

https://lilianweng.github.io/posts/2018-08-12-vae/

49

VAE ➜ variational autoencoder

https://lilianweng.github.io/posts/2018-08-12-vae/

• Instead of mapping the input into a fixed vector, we want to map it into a distribution

https://lilianweng.github.io/posts/2018-08-12-vae/

50

Large language models

51MIT 6.S191 (Google): Large Language Models - https://www.youtube.com/watch?v=ZNodOsz94cc

• Predict the next word in a sentence - generate one token at a time

Large language models

https://www.youtube.com/watch?v=ZNodOsz94cc

52MIT 6.S191 (Google): Large Language Models - https://www.youtube.com/watch?v=ZNodOsz94cc

• Dramatic increase in zero-shot accuracy with increasing # parameters / context windows

Large language models

https://www.youtube.com/watch?v=ZNodOsz94cc

53MIT 6.S191 (Google): Large Language Models - https://www.youtube.com/watch?v=ZNodOsz94cc

• Context matters ➜ prompt engineering

Large language models

https://www.youtube.com/watch?v=ZNodOsz94cc

Coffee break

Astrophysics applications

encz
3−10 2−10 1−10 1 10

]
 -1

 y
r

-3
 [G

pc
G

R
B

ρ

1

10

210

310

10 25 100 500 5000
 [Mpc]encD

Low-luminosity GRBs
High-luminosity GRBs

56

• Expected high event rates ➜ possibly detected by self-triggering γ-rays / optical.
• Probe GRB physics.
• Possible association with ultra-high energy cosmic rays & neutrinos.
• …

6 Advances in Astronomy

(SBO) [30, 56–60] (see aswell Section 9). It was demonstrated
by [61, 62] that a key observable of !!GRBs are their single-
peaked, smooth, nonvariable "-ray LCs compared to the
more erratic "-ray LCs of jetted-GRBs, which become softer
over time. It was shown by [60] that an SBO is likely present
in all LGRB events, but for any realistic configuration the
energy in the SBOpulse is lower bymany orders ofmagnitude
compared to those observed in the GRB prompt emission
(#SBO = 1044–1047 erg, for reasonable estimates of the ejecta
mass and progenitor radii). These low energies (compared
with #!,iso) suggest that relativistic SBOs are not likely to be
detected at redshifts exceeding $ ≈ 0.1. In cases where they
are detectable, the SBO may be in the form of a short pulse
of photons with energies >1MeV. Inspection of the #" values
in Table 2 shows that only a few events have photons with
peak "-ray energies close to this value: GRB 140606Bhas#" ≈800 keV [32]; however suspected !!GRBs 060218 and 100316D
only have #" = 5 keV and 30 keV, respectively. It should be
noted that while the SBO model of [60] successfully explains
the observed properties (namely, the energetics, temperature,
and duration of the prompt emission) of GRBs 980425,
031203, 060218, and 100316D, their SBOorigins are still widely
debated [63, 64], with no firm consensus yet achieved.

Thermal, black body (BB) components in UV and X-
ray spectra have been detected for several events, including
GRB 060218 (X-ray: &' = 0.17 keV, time averaged from
first 10,000 s, [58]); GRB 100316D (X-ray: &' = 0.14 keV,
time averaged from 144–737 s, [65]); GRB 090618 (X-ray:&' = 0.3–1 keV up to first 2500 s, [66]); GRB 101219B (X-ray:&' = 0.2 keV, [67]); and GRB 120422A (UV: &' = 16 eV at
observer-frame (− (0 = 0.054 d, [41]). A sample of LGRBs
with associated SNe was analysed by [68] who found that
thermal components were present in many events, which
could possibly be attributed to thermal emission arising from
a cocoon that surrounds the jet [69] or perhaps associated
with SBO emission. Reference [67] analysed a larger sample
of LGRBs and found that, for several events, a model that
included a BB contribution provided better fits than absorbed
power laws. Reference [70] found that, in their sample of
28 LGRBs, eight had evidence of thermal emission in their
X-ray spectra, indicating such emission may be somewhat
prevalent. However, the large inferred BB temperatures (&'
ranging from 0.16 keV for 060218 to 3.2 keV for 061007, with
an average of ≈1 keV) indicates that the origin of the thermal
emissionmay not be a SBO.Moreover, the large superluminal
expansions inferred for the thermal components instead
hint at a connection with late photospheric emission. In
comparison, some studies indicate a SBO temperature of ∼
1 keV [71], while [60, 72–74] showed that for a short while the
region behind the shock is out of thermal equilibrium, and
temperatures can reach as high as ∼50 keV.

The radius of the fitted BB component offers additional
clues. References [58, 59] derived a BB radius of 5–8× 1012 cm
for GRB 060218; [65] found ≈8 × 1011 cm for GRB 100316D;
[41] found ≈7 × 1013 cm for GRB 120422A; and [75] derived
a radius of ≈9 × 1013 cm for GRB 140606B.The radii inferred
for GRBs 060218, 120422A, and 140606B are commensurate
with the radii of red supergiants (200–1500R⊙), while that
measured for GRB 100316D is similar to that of the radius of a

Relativistic ejectaNonrelativistic ejecta
SNe Ibc

Rel. IcBL

GRBs

Engine-driven
SNe

llGRBs

(Γ") −5.2

(Γ") −2.4

(Γ")−0.4

0.1 1 100.01
Ejecta velocity (Γ")

1044

1046

1048

1050

1052

1054

E K
(e

rg
)

Figure 7: The positions of GRBs, SNe Ibc, and GRB-SNe in the#K-Γ- plane [32, 78–81]. Ordinary SNe Ibc are shown in green,!!GRBs in blue, relativistic SNe IcBL in purple, and jetted-GRBs in
red. Squares are used for the slow-moving SN ejecta, while circles
represent the kinetic energy and velocity of the nonthermal radio-
emitting ejecta associated with these events (e.g., the GRB jet). The
velocities were computed for (− (0 = 1 day (rest-frame), where
the value Γ- = 1 denotes the division between relativistic and
nonrelativistic ejecta. The solid lines correspond to (green) ejecta
kinetic energy profiles of a purely hydrodynamical explosion #K ∝(Γ-)−5.2 [57, 82, 83]; (blue/purple dashed) explosions powered by
a short-lived central engine (SBO-GRBs and relativistic IcBL SNe
2009bb and 2012ap: #K ∝ (Γ-)−2.4); (red) those arising from a
long-lived central engine (i.e., jetted-GRBs; #K ∝ (Γ-)−0.4 [84]).
Modified, with permission, fromMargutti et al. [78, 81].

blue supergiant (≤25R⊙).These radii, which are much larger
than those expected for Wolf-Rayet (WR) stars (of order a
few solar radius to a few tens of solar radii), were explained
by these authors by the presence of a massive, dense stellar
wind surrounding the progenitor star, where the thermal
radiation is observed once the shock, which is driven into
the wind, reaches a radius where the wind becomes optically
thin. An alternative explanation for the large BB radii was
presented by [76] (see aswell [77]), where the breakout occurs
in an extended (0 = 100R⊙) low-mass (0.01M⊙) envelope
surrounding the preexplosion progenitor star. The origin of
envelope is likely material stripped just prior to explosion,
and such an envelope is missing for high-luminosity GRB-
SNe [77].

For a given GRB-SN event there are both relativistic and
nonrelativistic ejecta, where the former is responsible for
producing the prompt emission, and the latter is associated
with the SN itself. The average mass between the two
components is large: the ejecta mass of a GRB-SN is of order
2–8M⊙, while that in the jet that produces the "-rays is
of order 10−6 M⊙, based on arguments for very low baryon
loading [88]. A GRB jet decelerates very rapidly, within a few
days, because the very low-mass ejecta is rapidly swept up
into the comparatively larger mass of the surrounding CSM.
Conversely, SNe have much heavier ejecta and can be in free-
expansion for many years or even centuries. Measuring the
amount of kinetic energy associated with each ejecta compo-
nent can offer additional clues to the explosion mechanisms
operating in these events. Figure 7 shows the position of SNe

Purely hydrodynamical Long-lived engine

Low luminosity GRBs as a benchmark pop. of short transients

C
ano et al (2016) arxiv:1604.03549

Liang et al (2007) arxiv:0605200

https://arxiv.org/abs/1604.03549
https://arxiv.org/abs/astro-ph/0605200

• MMS observations
• Strategies

• Real-time detection of signals in multiple channels

• Near- and late-time follow-up for direct association of events

• Archival stacking/population studies

• Correlation of multiple low-significance observables, which combined may result in meaningful detections

• Challenges

• Uncertainties on instrument simulations (e.g., detector efficiency)

• Uncertainties on physical backgrounds (e.g., galactic foregrounds)

• Precise modelling of observing conditions (e.g., clouds, night-sky background)

• Subtraction of artefacts (e.g., stars, satellites)

• Extremely quick follow-up with multiple MMS/MWL facilities is necessary

• Machine learning anomaly detection approach
• Training exclusively with real data ➜ mitigates systematics (no imperfect simulations used)

• Does not require explicit physical modelling of perspective sources (generally not well constrained)

• Facilitates data-fusion of inputs from different experiments

• Extremely fast for evaluation, enabling quick response and coordination between facilities

MMS transient detection

57

58

• Two methodologies for source detection
• Anomaly detection

• Train an RNN to predict a time-series of the expected background

• Compare the predictions to the true time series ➜ identify a transient event as an anomalous flare

• Classification

• Train an RNN to classify a time series as background or signal, using labels

• Training requires both background data and signal data (➜ introduces some model dependence)

• Calibration pipeline
• The results are calibrated statistically ➜ significance / p-value estimates for discovery

Recurrent neural networks for transient detection

Sadeh (2020) arxiv:2005.06406

https://arxiv.org/abs/2005.06406

59

• Example for the Cherenkov telescope array (CTA)
• Methodology

• Train an RNN to predict a time-series of γ-ray event counts (binned in time & energy bins)

• Add “auxiliary” input data, which affect the γ-ray rates (e.g., zenith of observation)

• Compare the predictions to the true γ-ray rates, and identify a transient event as an anomalous flare

• Training strategy

• Anomaly detection: training exclusively on background data ➜ no-source in the region of interest; data

potentially scrambled in time

• Classification: also use simulations of GRBs ➜ simple spectral and temporal templates

γ-ray transients

Significance calibration for anomaly detection

60

• In this example, the outputs of the RNN are γ-ray event counts in 6 energy bins

• Calibration procedure

•Calculate a test statistic (TS) for each metric (based on the normalised
difference between the RNN predictions and the ground truth)

•Map TS ➜ p-values from TS distribution

•Derive combined TS from the logarithms of individual p-values

•Map combined TS ➜ combined p-value from distribution

• The combined TS distribution is compared to the expected background
hypothesis

Serendipitous γ-ray transient detection

61

• Methodology

• Shown here for a sample with expected properties for LL-GRBs, assuming either simple power-law (PL) or

exponentially cutoff spectral PL models.

• The reference detection rate (ctools) indicates a likelihood-based method, implemented as part of the ctools

software package for CTA simulations

• Main takeaways

• When simple PL models are fit the the data, both RNN methods perform better than the likelihood approach

Sources modelled as
exponentially cutoff PLs

Sources modelled
as simple PLs

62

Predicting MWL blazar flares
• Blazars

• Active galactic nuclei (AGN) with a relativistic jet
pointing towards the observer

• Unresolved radio core, with flat or inverted spectrum

• Extreme (temporal / amplitude) variability

• High degree of optical & radio polarisation

• Most common sources of EGAL GeV-TeV γ-rays

agn@Fermi

https://fermi.gsfc.nasa.gov/science/eteu/agn/

63

Predicting MWL blazar flares
• Blazar variability

• Occurs on different time scales (minutes ➜ months)

• Short-duration on top of slower variability trends

• Flaring mechanisms still unclear

• Open questions

• Origin of the HE emission ➜ leptonic (IC) and/or

hadronic (proton synchrotron ; photo-meson) ➜
neutrinos & UHECRs?

• Role of magnetic fields

• Origin of ultra-short (~minute) variability ➜ turbulence

; magnetic reconnection ; shocks?

• Extreme BL Lacs ➜ origin of very hard TeV spectra

• Moving forward

• ➜ (Simultaneous) MWL observations (+ polarisation)

• ➜ Characterising variability on different time-scales

Arlen et al (2012) arxiv:1211.3073

BL Lacertae

https://arxiv.org/abs/1211.3073

64

Predicting MWL blazar flares H. Stolte, J. Sinapius, 
I. Sadeh, E. Pueschel, 
D. Berge, M. Weidlich

65

Predicting MWL blazar flares H. Stolte, J. Sinapius, 
I. Sadeh, E. Pueschel, 
D. Berge, M. Weidlich

• Simulation dataset

• Fermi-LAT ⊕ CTA ➜ modelled after 1ES 1215+303

• Bayesian blocks ➜ general flux scale

• Historically inspired sparsity in the VHE channel

• Add stochastic noise ⊕ long-term (small scale) plateaus

10-year Fermi LAT point source catalog (2020)

Valverde et al (2020) arxiv:2002.04119

https://ui.adsabs.harvard.edu/abs/2021ATel15110....1F/abstract
https://arxiv.org/abs/2002.04119

66

Predicting MWL blazar flares H. Stolte, J. Sinapius, 
I. Sadeh, E. Pueschel, 
D. Berge, M. Weidlich

• Forecasting

• MWL time-series as inputs ➜ encoder ⊕ decoder steps

• An encoder-encoder trained exclusively on background data (shuffled time-

series)

• Project the encoder time-series onto the decoder span ➜ background-only

hypothesis of "future" data

67

Predicting MWL blazar flares H. Stolte, J. Sinapius, 
I. Sadeh, E. Pueschel, 
D. Berge, M. Weidlich

• Reconstruction

• MWL time-series as inputs ➜ decoder ⊕ forecasting steps

• An auto-encoder trained on multiple data classes (pure background + random

fluctuations of different types)

• ➜ Condense the data into a low-dimensional representation (latent dimension)

68

Predicting MWL blazar flares H. Stolte, J. Sinapius, 
I. Sadeh, E. Pueschel, 
D. Berge, M. Weidlich

• Bayesian clustering

• MCMC ➜ fit a Gaussian mixture model (GMM) to the (shuffled) background

• Add reconstruction error as part of faux

• Derive TS for anomalies ➜ probability for new data to belong to the GMM

• Calibrate TS into p-values

69

Predicting MWL blazar flares
• Analysis strategy

• Shuffle recent data in order to factor out known
high states & other correlations

• Construct sliding-window time-series

• Enhance anomalies via predictions of a

background-only hypothesis ➜ contrast with
real data

• Supplement auto-encoder background data
with randomised examples of fluctuations to
the inputs ➜ "open up" the cluster phase
space

• Fit the GMM on the background sample in
cluster-space ➜ TS for anomalies

H. Stolte, J. Sinapius, 
I. Sadeh, E. Pueschel, 
D. Berge, M. Weidlich

70

Predicting MWL blazar flares H. Stolte, J. Sinapius, 
I. Sadeh, E. Pueschel, 
D. Berge, M. Weidlich

• Illustration of model inputs

71

Predicting MWL blazar flares H. Stolte, J. Sinapius, 
I. Sadeh, E. Pueschel, 
D. Berge, M. Weidlich

• Embedded
"cluster-space"
projections

72

Predicting MWL blazar flares H. Stolte, J. Sinapius, 
I. Sadeh, E. Pueschel, 
D. Berge, M. Weidlich

• Performance on
simulated "flares"
for two input
sources (Fermi-LAT
& CTA)

Questions… ?

