(High-energy) Neutrino astrophysics & astronomy

Winter, Walter DESY, Zeuthen, Germany

DESY summer students August 2025

https://multimessenger.desy.de/

Contents

- Observations of TeV-PeV neutrinos (overview of selected results)
- Physics of neutrino production (theory)
- Multi-messenger follow-ups / astrophysical objects:
 Neutrinos from AGN blazars

Observations of TeV-PeV neutrinos (overview)

Observing TeV-PeV neutrinos with IceCube

Muon track:

- From v_{μ}
- From v_{τ} (17 %)

Better directional info

Cascade (shower):

- From v_e
- From v_{τ}
- From v_e , v_{μ} , v_{τ} NC interactions

Better energy info

ANTARES

A. Kouchner

A flux of high-energy cosmic neutrinos

IceCube: Science 342 (2013) 1242856; Phys. Rev. Lett. 113, 101101 (2014); update from Kopper at ICRC 2017

Backgrounds: Neutrinos and muons from the atmosphere

Muon lifetime: 2 10^{-6} s (~ 600 m) x E/m₀. In addition: muons lose energy.

Consequence: Atmospheric neutrino and muon backgrounds at Earth

For transport computations, see Gaisser, Engel, Resconi: Cosmic rays and particle physics, Cambridge, 2016

IceCube, Phys. Rev.D 91 (2015) 122004

Diffuse neutrino flux – observed in different event samples

HESE = High Energy Starting Events

Interaction within detection volume

Outer layer of detector used as veto (atm. muons)

Sensitive to both hermispheres, all flavors

Lower energies = contained events

3.2

2.4

2.6

2.2

2.0

2.8

Spectral Index γ_{SPL}

3.0

3.4

Through-going muon tracks

Sensitive to ν_{μ} only from Northern hemisphere

Large effective volume (interaction may be outside detector)

Muon energy gives a lower limit for neutrino energy

New event classes

Glashow resonance

Double bang (v_{τ}) candidates

Page 10

IceCube, Nature 591 (2021) 7849, 220

IceCube, arXiv:2011.03561 and PRL 125 (2020) 12, 121104

Time-integrated 10 year point source searches

Most significant:
 NGC 1068 (3σ post-trial)
 Active galaxy, Seyfert 2, starburst

- The other three are AGN blazars
- TXS 0506+056 is prominent because it was found earlier through a multi-messenger follow-up

IceCube, PRL 124 (2020) 5, 051103; from G. Illuminati @ Paris 2020

Neutrinos from NGC 1068

- Excess of 79 (+22 -20) events, leading to 4.2σ significance
- Strongest point source, soft spectrum, z=0.004
- Obscured in very-high energy gamma-rays; kind-of expected if neutrino production is efficient, e.g. Murase, Guetta, Ahlers, PRL 116 (2016) 071101

Galactic plane seen in neutrinos at 4.5σ

KM3-230213A

Finding its origin would be direct evidence for UHECRs!

A high-energy neutrino of unknown origin

- Energy 220 PeV; 72 PeV 2.6 EeV 90% CL interval
 Nature 638 (2025) 8050, 376 (corresponds to primary rigidity R ~ 1 100 EV!!!)
- 17 blazars within 99%CL region, #1 (MRC 0614-083) is closest source —
- Tension with IceCube favors "year-long transient"
 Neronov, Oikonomou, Semikoz, 2025; Li et al 2025.
 → Tidal Disruption Event? AGN accretion flare?
- Combined fit with IceCube: arXiv:2502.08173

Nature 638 (2025) 8050, 376

Stacking limits ...

Gamma-Ray Bursts (GRBs)

- Transients, time variability
- High luminosity over short time

Less than ~1% of observed v flux

IceCube, Nature 484 (2012) 351; Newer version: arXiv:1702.06868

... for the most energetic sources classes

Active Galactic Nuclei (AGN) blazars

- Steady emission with flares
- Lower luminosity, longer duration

Less than ~25% of observed v flux?

IceCube, Astrophys. J. 835 (2017) 45

Page 15
Page 15

Future neutrino telescopes: PeV neutrinos

... towards a global neutrino observatory?

Physics of neutrino production

(theoretical background)

Particle acceleration ... a pragmatic perspective

Lorentz force = centrifugal force → E_{max} ~ Z c B R

B field

Example: Fermi shock acceleration

• Energy gain per cycle: E → η E

Escape probability per cycle: P_{esc}

• Yields a **power law** spectrum ~ $E^{\frac{\ln P_{\rm esc}}{\ln \eta}-1}$

In P_{esc}/In η ~ -1
 (from compression ratio of a strong shock),
 and E⁻² is the typical "textbook"
 spectrum

 Theory of acceleration challenging, but we do observe power law (= nonthermal) spectra in Nature

For multi messenger
 perspective:
 adopt pragmatic
 point of view!
 (we know that it
 works, somehow ...

Secondary production: Particle physics 101?

Beam dump picture (particle physics)

Interaction rate Γ ~ c N [cm⁻³] σ [cm²]

Target density (e.g. N_{γ}) critical for production!

Key challenge: Need volume

(Photon energy in nucleon rest frame)

- Astrophysical challenges:
 - Feedback between beam and target (e.g. photons from π^0 decays)
 - Need self-consistent description called radiation model
 - Density in source, in general, not what you get from the source

Here: typically a spherical blob in relativistically moving frame

Global radiation models (theory)

Time-dependent PDE system, one PDE per particle species i

$$\frac{\partial N_i}{\partial t} = \frac{\partial}{\partial E} \left(-b(E)N_i(E) \right) - \frac{N_i(E)}{t_{\rm esc}} + Q(E)$$

Cooling (continuous)

Escape

Injection

 $b(E)=-E t^{-1}_{loss}$

"radiation processes"

 $Q(E,t) [GeV^{-1} cm^{-3} s^{-1}]$

N(E,t) [GeV⁻¹ cm⁻³] particle spectrum including spectral effects

Injection: species i from acceleration zone, and from other species j:

$$Q(E) = Q_i(E) + Q_{ji}(E)$$

$$Q_{ji}(E_i) = \int dE_j \, N_j(E_j) \frac{\Gamma_j^{\mathrm{IT}}(E_j)}{dE_i} \frac{dn_{j\to i}^{\mathrm{IT}}}{dE_i}(E_j, E_i)$$

Density other species

Interaction rate

Re-distribution function +secondary multiplicity

Strongly forward peaked spectra in interaction frame (e.g. blob frame)

→ Re-distribution function narrow + peaked

E.g. $E_v \sim 0.25 E_\pi$ $\sim 0.25 \times 0.2 \times E_p = 0.05 E_p$

Radiation processes

Examples for e and p

- These processes lead to cooling, escape (→ leave species), and re-injection terms
- Other processes relevant for neutrinos: synchroton cooling of muons, pions

Photo-pion production in the multi-messenger context

- Neutrino peak determined by maximal cosmic ray energy [conditions apply: for target photons steeper (softer) than ε^{-1} (and low enough ε_{min})]
- Interaction with target photons
 (Δ-resonance approximation for C.O.M. energy):

$$p + \gamma \rightarrow \Delta^+ \rightarrow \begin{cases} n + \pi^+ \rightarrow v \\ p + \pi^0 \rightarrow \gamma \end{cases}$$

 E_{γ} [keV] ~ 0.01 Γ^2/E_{ν} [PeV] **keV energies interesting!** (computed for Δ-res, yellow) \rightarrow

Photons from pion decay:

$$\frac{\pi^0}{\gamma} \rightarrow \gamma + \gamma$$

Injected at $E_{\gamma,peak} \sim 0.1 E_{p,max}$ TeV-PeV energies interesting!

(but: electromagnetic cascade in source – later!)

AGN neutrino spectrum (example)

From: Hümmer et al, Astrophys. J. 721 (2010) 630; for a more complete view of possible cases, see Fiorillo et al, JCAP 07 (2021) 028

Application for pp interactions: Starburst galaxies

Gamma-ray diffuse flux

$$p + p \rightarrow \begin{Bmatrix} \pi^+ \\ \pi^- \end{Bmatrix} v$$
 $\uparrow \qquad \gamma$

- Neutrinos and gamma-rays follow primary E⁻² spectrum
- Diffuse gamma-ray background dominated by AGN; non-AGN contributions sub-leading
- Constrains spectral index for non-AGN contributions (starburst galaxies, ...)

Bechtol et al, 2017; Palladino et al, arXiv:1812.04685; Peretti et al, 2020; ...

Murase, Ahlers, Lacki, 2013

Flavor composition in terms of *flavor triangles*

Theoretical expectations

 Standard model expectation for flavor mixing (averaged neutrino oscillations):

$$P_{\alpha\beta} = \sum_{i=1}^{3} |U_{\alpha i}|^{2} |U_{\beta i}|^{2}$$

- Flavor compositons at source $(f_e:f_{\mu}:f_{\tau})_S:$
 - Pion decay chain: (1:2:0)
 - Muon damped source: (0:1:0) previous slide
 - Neutron decays: (1:0:0)
 - Charmed meson decays or muon pile-up: (1:1:0)

for a comprehensive picture of energy-dependent flavor compositions, see Hümmer et al, Astropart. Phys. 34 (2010) 205

Small region of flavor triangle occupied by SM
 physics, but BSM may cause deviations!

Physics potential

Multi-messenger follow-ups

Example: AGN blazars

AGN blazar

Science 361 (2018) no. 6398, eaat1378

https://multimessenger.desy.de/

What is an AGN blazar? (AGN = Active Galactic Nucleus)

Page 26

Electromagnetic picture of blazars

B

Exhibit a typical two-hump structure

Measured over extremely large range of electromagnetic spectrum

Often observation "campaigns" at same time, or follow-up searches of neutrinos

Simplest explanation: first peak from electron synchroton, second from inverse Compton up-scattering of these synchrotron photons off the same electrons

(= SSC – "synchrotron self-Compton model")

Radiation processes

Examples for e and p - recap

 $\left(\mathsf{R}' \right)$

 Synchrotron self-Compton (SSC) or external Compton (EC) models

Proton synchrotron models (require large B')

Pion cascade models

More exotic hadronic models, for example:

A neutrino from the flaring AGN blazar TXS 0506+056

Sept. 22, 2017:

A neutrino in coincidence with a blazar flare

Observed by Fermi-*LAT* and MAGIC (blazar flare)

Significance for correlation: 3σ

 $z = 0.3365 \pm 0.0010$ **Paiano et al, 2018**

SED from a multi-wavelength campaign

Color: coincident with neutrino; gray: archival data

Analysis of archival neutrino (IceCube)

A (orphan) neutrino flare (2014-15) found from the same object in archival neutrino data

During that historical flare:

- Coincident data sparse (since no dedicated follow-up campaign)
- No significant gamma-ray activity

Fermi-LAT data; Padovani et al, MNRAS 480 (2018) 192

At 2014-15 neutrino flare

The 2017 flare Page 31

Multi-messenger interpretation of TXS 0506+056

Leptonic models

Hadronic (π cascade) models

Hybrid or p synchrotron models

No neutrinos

Violate X-ray data

X-ray (and TeV γ -ray) data indicative for hadronic origin

 Violate energetics (L_{edd}) by a factor of a few hundred or significantly exceed v energy

More freedom through multiple radiation zones

... to solve energetics problem (examples). At the expense of more parameters.

Formation of a compact core

Compact core, ignited during flare state Compact core ignited during flare state Compact core ignited during flare state 10 pc 1.35 Gpc

Gao et al, Nature Astronomy 3 (2019) 88

External radiation fields

Jet-cloud interactions/ several emission zones

Liu et et al, 2018; see also Xue et al, 2019

The archival (2014-15) neutrino flare of TXS 0506+056

- Electromagnetic data during neutrino flare sparse (colored)
- Hardening in gamma-rays? (red shaded region)

Padovani et al, 2018; Garrappa et al, arXiv:1901.10806

Theoretical challenge: Where did all the energy go to?

$$p + \gamma \to \Delta^+ \to \left\{ \begin{array}{l} n + \pi^+ \Longrightarrow \nu \\ p + \pi^0 \Longrightarrow \gamma \end{array} \right. \begin{array}{c} \text{Comparable} \\ \text{amounts of} \\ \text{energy} \end{array}$$

Options for hiding the gamma-rays (+electrons):

- Reprocessed and "parked" in E ranges without data during flare? (e.g. MeV range, sub-eV range)
 - → Can this be accommodated in a self-consistent model (next slide)? Fine-tuned during flare?
 - → Requires monitoring in all wavelength bands
- Leave source + dumped into the background light?
 - → Implies low radiation density to have gamma-rays escape
 - → Difficult to accommodate energetics if sole solution (low neutrino production efficiency!)
- Absorbed or scattered in some opaque region,
 e.g. dust/gas/radiation?
 - → Requires additional model ingredients see e.g. Wang et al, 2018; Murase et al, 2018

One zone description of spectral energy distribution

.... can describe SED (with significant excess of L_{edd}), but no more than two neutrino events

SED components

Page 36

Energy deposited in MeV range and absorbed in EBL (here about 80% absorbed, 20% re-processed for E_{γ} > TeV)

Primary electron processes (synchrotron and inverse Compton) dominate *nowhere* in this model!

From: Rodrigues, Gao, Fedynitch, Palladino, Winter, ApJL 874 (2019) L29; see also Halzen, et al, ApJL 874 (2019) 1, L9; Petropoulou et al, ApJ 891 (2020) 115

Summary and outlook

Evidence for multiple individual neutrino source populations emerging

- AGN blazars
- AGN cores
- TDE?
- Galactic
- Other

Neutrino production

- The neutrinos spectrum typically peaks at the primary energy E_{v,peak} ~ 0.05 E_{p,max}.
 Exception: strong B (secondary cooling)
- The neutrino spectrum follows the primary spectrum for pp interactions and thermal targets with high C.O.M. energies
- Neutrinos can be only seen from very nearby or very luminous individual sources

Bartos et al, arXiv:2105.03792