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Recap of the previous lecture

Qubits

> Quantum mechanical two-level systems H = {|0〉 , |1〉}
> Can be in superposition

> Mulitple qubits can be entangled

Quantum gates

> Quantum gates: unitary operations on a single/few qubits

> Combining quantum gates we can express any unitary

operation

Quantum circuits

> Combining quantum gates we can express any unitary

operation

> Measurement reveals information about the system

|0〉 H • 




|0〉 
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Outline

The Deutsch-Josza algorithm

Grover’s algorithm

Complexity theory

Hybrid quantum-classical algorithms

Challenges for hybrid quantum-classical algorithms
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The Deutsch-Josza algorithm

Setting

> Given: a function f : Zn
2 → Z2 that is promised to be constant or balanced

> Task: find out if f is constant or balanced

> Classical computer: try more than half of the possible

inputs

⇒
1

2
× 2n + 1 = 2n−1 + 1 function calls

> Let us assume we have a unitary Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉

|x〉 n/
Uf

|x〉
|y〉 |y ⊕ f(x)〉

> Uf is called an oracle

x0 x1 f(x0, x1)

0 0 1

0 1 1

1 0 0

1 1 0
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The Deutsch-Josza algorithm

Deutsch-Josza algorithm

|0〉 n/

�
�
�
�
�

H⊗n

�
�
�
�
�

Uf

�
�
�
�
�

�
�
�
�
�

Uf

�
�
�
�
�

H⊗n

�
�
�
�
�






|0〉 Z //

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉 |ψ5〉 |ψ6〉
1 |ψ1〉 = |0...0〉 |0〉

2 |ψ2〉 = (|0〉+ |1〉)⊗n |0〉 = (
∑

x |x〉) |0〉
3 |ψ3〉 =

∑
x |x〉 |0⊕ f(x)〉 =

∑
x |x〉 |f(x)〉

4 |ψ4〉 =
∑

x(−1)f(x) |x〉 |f(x)〉
5 |ψ5〉 =

∑
x(−1)f(x) |x〉 |f(x)⊕ f(x)〉 =

∑
x(−1)f(x) |x〉 |0〉

f(x) constant

6 |ψ5〉 = ±
∑

x |x〉 |0〉
7 |ψ6〉 = ± |0...0〉 |0〉

f(x) balanced

6 |ψ5〉⊥ |φ〉 =
∑

y |y〉 |0〉
7 0 = 〈φ|ψ5〉 = 〈φ|H⊗nH⊗n|ψ5〉 = (〈0...0|〈0|)|ψ6〉
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The Deutsch-Josza algorithm

Deutsch-Josza algorithm

> Quantum algorithm allows for deciding whether f is balanced or not with two calls to

the oracle (independent of n)

> Query the oracle in superposition

> Constructive interference (destructive interference) yields an unity (zero) amplitude

in the constant (balanced) case

The Deutsch-Josza algorithm needs exponentially fewer calls to the oracle than the

classical algorithm.
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The Deutsch-Josza algorithm

Deutsch-Josza algorithm on quantum hardware

> Example for n = 2 input bits and the

following Boolean function

x0 x1 f(x0, x1)

0 0 0

0 1 1

1 0 1

1 1 0

Uf

•
= •

> Results on actual quantum

hardware (ibmq_lagos)
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Measurement outcome
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200
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2.

The Deutsch-Josza algorithm

Grover’s algorithm

Complexity theory

Hybrid quantum-classical algorithms

Challenges for hybrid quantum-classical algorithms
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Setting

Description of the problem

> Goal: find an element in an unstructured database

> Given:

A set of N elements {x0, x1, . . . , xN−1}
A function f : {x0, x1, . . . , xN−1} → Z2

An element xk is called iff marked f(xk) = 1

> Task:

Find the marked element(s) in the data base

> Best classical solution: go through the elements one by one or try elements randomly

⇒ Access the database O(N) times
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Setting

Comments

> If the database is sorted, the element can be found in O(logN) time, however sorting

the database takes O(N logN)
⇒ Depending on the problem sorting might not pay off

> The problem essentially corresponds to function inversion: find the element that

produces a certain output of the function

⇒ Brute-force attack in symmetric cryptography

> Many problems can be cast into such a form, e.g. satisfiablity of a Boolean clause
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Grover's search algorithm

Basic overview

> Quantum algorithm that allows for solving the problem described before with O(
√
N)

to an oracle implementing f
⇒ Polynomial speedup

> The different elements of the database are encoded in the different basis states

x0 ≡ |x0〉 = |000〉 x2 ≡ |x2〉 = |010〉 x4 ≡ |x4〉 = |100〉 x6 ≡ |x6〉 = |110〉
x1 ≡ |x1〉 = |001〉 x3 ≡ |x3〉 = |011〉 x5 ≡ |x5〉 = |101〉 x7 ≡ |x7〉 = |111〉

> Starting from an equal-weight superposition of all basis states, one uses amplitude
amplification to single out the marked element

Oracle

Diffusion operator

> Measure the final state to obtain a candidate for the marked element |m〉

DESY. | Introduction to Quantum Computing | Stefan Kühn | DESY Summer Student Program, 18.08.2025 Page 12
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Basic overview

> Quantum algorithm that allows for solving the problem described before with O(
√
N)

to an oracle implementing f
⇒ Polynomial speedup

> The different elements of the database are encoded in the different basis states

x0 ≡ |x0〉 = |000〉 x2 ≡ |x2〉 = |010〉 x4 ≡ |x4〉 = |100〉 x6 ≡ |x6〉 = |110〉
x1 ≡ |x1〉 = |001〉 x3 ≡ |x3〉 = |011〉 x5 ≡ |x5〉 = |101〉 x7 ≡ |x7〉 = |111〉

> Starting from an equal-weight superposition of all basis states, one uses amplitude
amplification to single out the marked element

Oracle

Diffusion operator
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Grover's search algorithm

The oracle

> We need to implement the function f on a quantum computer

> This is done in form of an oracle

Uf |xi〉 = (−1)f(xi) |xi〉 , Uf = 1− 2 |m〉〈m|

> Effect of the oracle on a wave function |ψ〉 =
∑

i ci |xi〉

> While Uf has an effect on |ψ〉 this effect cannot be measured, as a measurement

only reveals information about |ci|2
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Grover's search algorithm

The oracle

> To understand the effect of Uf further it is advantageous to

separate the wave function |ψ〉 in a component parallel to

|m〉 and one orthogonal to it

|ψ〉 = ci |m〉+
∑
i 6=m

ci |xi〉︸ ︷︷ ︸
|t〉

> Uf reflects |ψ〉 around |t〉

DESY. | Introduction to Quantum Computing | Stefan Kühn | DESY Summer Student Program, 18.08.2025 Page 14

L. K. Grover, Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing 212 – 219 (1996)



Grover's search algorithm

The oracle

> To understand the effect of Uf further it is advantageous to

separate the wave function |ψ〉 in a component parallel to

|m〉 and one orthogonal to it

|ψ〉 = ci |m〉+
∑
i 6=m

ci |xi〉︸ ︷︷ ︸
|t〉

> Uf reflects |ψ〉 around |t〉

DESY. | Introduction to Quantum Computing | Stefan Kühn | DESY Summer Student Program, 18.08.2025 Page 14

L. K. Grover, Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing 212 – 219 (1996)



Grover's search algorithm

The diffusion operator

> Let |u〉 = H⊗N |0 . . . 0〉
⇒ Uniform superposition of all 2N basis states

> Let R0 be the reflection around |0 . . . 0〉

R0 |y〉 =

{
+ |y〉 iff |y〉 = |0...0〉
− |y〉 , otherwise.

> Then Uu = H⊗NR0H
⊗N is a reflection around |u〉

> Uu is called Grover’s diffusion operator

> It corresponds to a reflection of the amplitudes around the

mean value µ = 1
N

∑
i ci
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Grover's search algorithm

The Grover iteration

> Start from the equal-weight superposition state |ψ〉 = |u〉 = H⊗N |0 . . . 0〉
> Repeatedly apply the oracle and the diffusion operator UuUf to the wave function
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Grover's search algorithm

The Grover iteration

> Start from the equal-weight superposition state |ψ〉 = |u〉 = H⊗N |0 . . . 0〉
> Repeatedly apply the oracle and the diffusion operator UuUf to the wave function
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Grover's search algorithm

The Grover iteration

> After k iterations the wave function is of the form

|ψk〉 = (UuUf )
k |ψ〉 = (UuUf )

k |u〉
= sin

(
(2k + 1)θ

)
|m〉+ cos

(
(2k + 1)θ

)
|t〉

> If cos
(
(2k + 1)θ

)
vanishes we are left with |m〉

(2k + 1)θ =
π

2
⇔ θ =

π

2(2k + 1)
≈ π

4k
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Grover's search algorithm

Complexity of the algorithm

> How does the optimal k depend on N?

> This can be determined with a simple geometrical

picture

sin(θ) = cos
(π
2
− θ

)
= 〈m|u〉 =

〈
m
∣∣H⊗n

∣∣00 . . . 0〉 =
1√
N

> For large values of N we can approximate

θ ≈ 1/
√
N ≈ π/4k

> Overall complexity O(
√
N)

DESY. | Introduction to Quantum Computing | Stefan Kühn | DESY Summer Student Program, 18.08.2025 Page 18

L.K. Grover, Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing 212 – 219 (1996)



Grover's search algorithm

Complexity of the algorithm

> How does the optimal k depend on N?

> This can be determined with a simple geometrical

picture

sin(θ) = cos
(π
2
− θ

)
= 〈m|u〉 =

〈
m
∣∣H⊗n

∣∣00 . . . 0〉 =
1√
N

> For large values of N we can approximate

θ ≈ 1/
√
N ≈ π/4k

> Overall complexity O(
√
N)

DESY. | Introduction to Quantum Computing | Stefan Kühn | DESY Summer Student Program, 18.08.2025 Page 18

L.K. Grover, Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing 212 – 219 (1996)



Grover's search algorithm

Quantum circuit for Grover’s algorithm

|0〉 H
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|0〉 H . . . 




|u〉 Grover iteration

> Initial layer of Hadamard gates prepares the equal-weight superposition |u〉
> Subsequent layers correspond do Grover iterations consisting of the oracle Uf and

the diffusion operator Uu amplifying the amplitude of the marked element

> Final measurement reveals the probability distribution of basis states
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Grover's search algorithm

Comments

> It is important to choose the right number of iterations, coefficient of |m〉 is given by

sin
(
(2k + 1)θ

)
⇒ It oscillates periodically in k assuming a small value of θ

> |ψ〉 will have a dominant component |m〉 at the end, but there might be small other

components

> A single measurement at the end might not reveal the element, but a few repetitions

should be sufficient

> We assume that we have f in form of the oracle Uf

⇒ If we have to go through all the elements to construct Uf this is not helpful!

> If one has additional knowledge on how to implement f one can often do better using

a classical algorithm

DESY. | Introduction to Quantum Computing | Stefan Kühn | DESY Summer Student Program, 18.08.2025 Page 20
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3.

The Deutsch-Josza algorithm

Grover’s algorithm

Complexity theory

Hybrid quantum-classical algorithms

Challenges for hybrid quantum-classical algorithms
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Complexity theory

Solving problems on a quantum computer

> Many more known quantum algorithms that (might) perform better than the best

known classical algorithms

I Shor’s factoring algorithm

I Grover’s search algorithm

I HHL algorithm for linear equations

I Quantum Simulation

I Bernstein–Vazirani algorithm

I ...

> Exploiting quantum features such as superposition and entanglement these

algorithms can outperform the best known classical algorithms

Which problems can be solved efficiently on quantum computers?

DESY. | Introduction to Quantum Computing | Stefan Kühn | DESY Summer Student Program, 18.08.2025 Page 22
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Complexity theory

> P: decision problems solvable by a

deterministic Turing machine in

polynomial time

> NP: decision problems solvable by a
non-deterministic Turing machine in
polynomial time

Solution can be checked on a

deterministic Turing machine in

polynomial time

> Since an exponential function grows asymptotically faster than any polynomial

problems in P are considered the “easy” ones, and the problems in NP are

considered the “hard” ones

> The problems that are at least as hard as any other problem in NP and are in NP

are called NP complete
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Complexity theory

BQP (bounded-error quantum

polynomial time):

> Decision problems solvable by a

quantum computer in polynomial time

with error probability less than 1/3

> Quantum equivalent to P, “easy

problems”

Take home message

> Exponential speedup on a quantum computer only for very specific problems

> No exponential speedup for NP-complete problems!
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Complexity theory

> Not strictly proven, proving P 6= NP is one of the millennium problems

> If P = NP then quantum computers would not allow for an exponential speedup

> Empirically, nobody has found a polynomial time algorithm for (all instances of) a

problem in NP

DESY. | Introduction to Quantum Computing | Stefan Kühn | DESY Summer Student Program, 18.08.2025 Page 25

https://www.claymath.org/millennium-problems/

https://www.claymath.org/millennium-problems/


Complexity theory

> Not strictly proven, proving P 6= NP is one of the millennium problems

> If P = NP then quantum computers would not allow for an exponential speedup

> Empirically, nobody has found a polynomial time algorithm for (all instances of) a

problem in NP

DESY. | Introduction to Quantum Computing | Stefan Kühn | DESY Summer Student Program, 18.08.2025 Page 25

https://www.claymath.org/millennium-problems/

https://www.claymath.org/millennium-problems/


4.

The Deutsch-Josza algorithm

Grover’s algorithm

Complexity theory

Hybrid quantum-classical algorithms

Challenges for hybrid quantum-classical algorithms
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Variational hybrid quantum-classical algorithms

On the verge of the NISQ era

> Noisy intermediate-scale quantum computers

with O(100) qubits are already available

> Noise significantly limits the circuit depths that

can be executed reliably, no quantum error

correction possible

> Current NISQ devices have already outperformed

classical computers for “artificially tailored” tasks

> For certain simple models NISQ devices results

were comparable with state of the art methods

> Larger quantum devices in the near future with

error correction are announced future

DESY. | Introduction to Quantum Computing | Stefan Kühn | DESY Summer Student Program, 18.08.2025 Page 27
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Variational hybrid quantum-classical algorithms

Current NISQ devices

> Small or intermediate scale

> Considerable amount of noise

> Only shallow circuits can be executed

faithfully/no error correction

> Quantum advantage demonstrated

Solving “useful” problems

> Large number of qubits

> Deep circuits

> Quantum error correction necessary

> So far only proof of principle

demonstrations

How can we utilize existing quantum hardware in a beneficial way?
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Variational hybrid quantum-classical algorithms

The basic idea of hybrid quantum-classical algorithms

> Combine classical and quantum devices

> Rely on classical computing where possible

> Use the quantum device as a coprocessor

Tackle the classically hard/intractable part of the problem

Feed the classical data obtained from a measurement back to the classical computer

Even modest quantum hardware can yield advantages
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Variational hybrid quantum-classical algorithms

Variational quantum-classical algorithms

> Focus on optimization problems trying to minimize a cost function C(~θ)
min
~θ

C(~θ) = 〈ψ(~θ)|H|ψ(~θ)〉, ~θ = Rn

> Solve them iteratively using a parametric ansatz

Quantum coprocessor: prepare the variational ansatz |ψ(~θi)〉 and evaluate C(~θi)
Classical computer: given C(~θi), find optimized ~θi+1

⇒ Run feedback loop between the classical computer and the quantum device until

convergence
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Variational hybrid quantum-classical algorithms

Why variational quantum algorithms?

> A large class of problems is naturally of that form or can be recast into such a form

Optimization Machine learning
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Data Algorithm

Physics/Chemistry

> Evaluating 〈ψ(~θ)|H|ψ(~θ)〉 is in general exponentially costly on classical computers

> Given that the ansatz |ψ(~θ)〉 is expressive enough at the end of the optimization

C(~θ) corresponds to the smallest eigenvalue E0 of H

|ψ(~θ)〉 is the corresponding eigenstate, i.e. the ground state of H
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Variational hybrid quantum-classical algorithms

How to implement variational quantum algorithms?

Optimization Machine learning
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Data Algorithm

Physics/Chemistry

> How do we measure the cost function?

> How can we cast problems in such a form?

> How can we choose a suitable ansatz?
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Measuring observables on a quantum device



Variational hybrid quantum-classical algorithms

Measuring observables

> Given an observable O we want to compute 〈ψ|O |ψ〉
> State can only be measured in the computational basis

〈ψ|O |ψ〉 = 〈ψ|U †UOU †U |ψ〉 =
〈
ψ′∣∣UOU † ∣∣ψ′〉 =

〈
ψ′∣∣D ∣∣ψ′〉

> Choose U such that D = UOU † = diag(λ0, . . . , λ2N−1) =
∑

x λx |x〉〈x| in the

computational basis

> Expand |ψ′〉 in the computational basis: |ψ′〉 =
∑

x c
′
x |x〉

〈ψ|O |ψ〉 =
〈
ψ′∣∣D ∣∣ψ′〉 = 2N−1∑

x=0

λx〈ψ′ |x〉〈x|︸ ︷︷ ︸
Px

ψ′〉 =
2N−1∑
x=0

λx
〈
ψ′∣∣Px

∣∣ψ′〉 =

2N−1∑
x=0

|c′x|2λx

> U is often called post rotation

> Instead of |ψ〉 we prepare |ψ′〉 and measure the probability distribution |c′x|2
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Variational hybrid quantum-classical algorithms

Example

> State |ψ〉 = Ry(π/4) |0〉
> Observable we want to measure O = X

D = UOU † =
1√
2

(
1 1
1 −1

)
X

1√
2

(
1 1
1 −1

)
= HXH = Z

> Circuit to prepare and measure

|ψ′〉 = U |ψ〉 = HRy(π/4) |0〉

|0〉 Ry(π/4) H 




⇒ Error is ∝ 1/
√
s→ 0 for s→ ∞
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Quantum Approximate Optimization Algorithm (QAOA)



Variational hybrid quantum-classical algorithms

Combinatorial optimization problems

> Algorithm for approximating (binary) combinatorial optimization problems

min
x∈V

C(x)

subject to x ∈ S

> x: binary string in V = {0, 1}n encoding a solution

> S ⊆ V : feasible solutions

> C : V → R cost function

> Objective is to find the optimal solution
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Variational hybrid quantum-classical algorithms

The Max-Cut problem

Max-Cut

> Input: undirected graph G = (V,E)

> Task: find a bipartition of V = A ∪B such that the number

of edges between A and B is maximal

> Max-Cut is NP-complete

⇒ We cannot find a (quantum) algorithm which solves it

polynomial time

> We can however try to find a good approximation to the

exact solution in polynomial time
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Variational hybrid quantum-classical algorithms

Max-Cut as combinatorial optimization problem

> Max-Cut on a Graph G = (V,E) can be expressed as

combinatorial optimization problem

> Label the vertices as xi define a function wij

xi =

{
0 if i ∈ A

1 if i ∈ B
wij =

{
1 iff (i, j) ∈ E

0 otherwise

> Cost function

C(x) =
n−1∑
i,j=0

wijxi(xj − 1) =
∑

(i,j)∈E

(xi(xj − 1) + xj(xi − 1))

⇒ Contribution of −1 iff endpoints of edge (i, j) belong to different subsets

> Finding the Max-Cut for G is equivalent to minimizing C(x)
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Variational hybrid quantum-classical algorithms

Max-Cut as Hamiltonian problem

> Cost function can be turned into a Hamiltonian using the mapping xi → 1
2(1− Zi)

Hc =
1

2

∑
(i,j)∈E

(ZiZj − 1)

> Diagonal Hamiltonian of Ising type, summands commute

> The eigenstates of H are computational basis states which encode graph cuts

> The lower the energy, the larger the number of edges between the subsets

> The ground state |x∗〉 encodes the bit string of the optimal solution x∗

How to choose a suitable ansatz to find a low energy state of H?
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Variational hybrid quantum-classical algorithms

The Quantum Approximate Optimization Algorithm (QAOA)

> We want to find a parametric quantum state |ψp(~γ, ~β)〉, ~γ, ~β ∈ Rp which minimizes

C(~γ, ~β) = 〈ψp(~γ, ~β)|Hc|ψp(~γ, ~β)〉

> Mixing Hamiltonian Hx =
∑

iXi

> Ansatz structure

|ψp(~γ, ~β)〉 =

> |+〉 = 1√
2
(|0〉+ |1〉) is an eigenstate of X, X |+〉 = +1 |+〉
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Variational hybrid quantum-classical algorithms

The Quantum Approximate Optimization Algorithm (QAOA)

> Ansatz for |ψp(~γ, ~β)〉

|ψp(~γ, ~β)〉 = e−iβpHxe−iγpHc . . . e−iβ1Hxe−iγ1Hc |+〉⊗n

> Circuit for p = 1

q0 : |+〉 • • • Rx(β1/2)

q1 : |+〉 • • Rx(β1/2)

q2 : |+〉 • • Rx(β1/2)

q3 : |+〉 • • • Rx(β1/2)
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Variational hybrid quantum-classical algorithms

The Quantum Approximate Optimization Algorithm (QAOA)

> |ψp(~γ, ~β)〉 is in general an (entangled) superposition of basis states

> After minimizing C(~γ, ~β) the wave function |ψp(~γ, ~β)〉 has dominant component(s) of

low energy states of Hc

> Measuring |ψp(~γ, ~β)〉 reveals the a bit string(s) x corresponding to low energy states
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Variational hybrid quantum-classical algorithms

The Quantum Approximate Optimization Algorithm (QAOA)

> Ansatz is inspired by trotterized adiabatic time evolution

> Choose functions γ(t), β(t) such that

γ(t) →

{
0 for t→ 0

1 for t→ T
β(t) →

{
1 for t→ 0

0 for t→ T

and set γk = γ(k∆t)∆t, βk = β(k∆t)∆t

⇒ QAOA ansatz is a stroboscopbic version of the adiabatic evolution

> Even p = 1 can in general not be simulated on a classical computer efficiently

> For some problems classical algorithms got a better approximation ratios

⇒ Theoretically it is not entirely clear how QAOA performs
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γ(t) →

{
0 for t→ 0

1 for t→ T
β(t) →

{
1 for t→ 0

0 for t→ T

and set γk = γ(k∆t)∆t, βk = β(k∆t)∆t

⇒ QAOA ansatz is a stroboscopbic version of the adiabatic evolution

> Even p = 1 can in general not be simulated on a classical computer efficiently

> For some problems classical algorithms got a better approximation ratios

⇒ Theoretically it is not entirely clear how QAOA performs
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Variational Quantum Eigensolver (VQE)



Variational hybrid quantum-classical algorithms

Variational Quantum Algorithms

> Same principle can be used to find ground states of general quantum Hamiltonians

> Define a cost function

C(~θ) = 〈ψ(~θ)|H|ψ(~θ)〉
> |ψ(~θ)〉 ansatz realized by a parametric quantum circuit

> In practice ansätze are often built by repeating a layered structure
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Variational hybrid quantum-classical algorithms

Variational Quantum Eigensolver (VQE)

> To measure a general N -qubit Hamiltonian, we translate it into a sum of Pauli terms

H =
∑
i

ciPi

with Pi ∈ {1, X, Y, Z}⊗N a Pauli string and real coefficients ci
> This can always be done, as the Pauli matrices form a basis for the real vector space

of Hermitian matrices (see exercises)

> The cost function is then given by

C(~θ) =
∑
i

ci〈ψ(~θ)|Pi|ψ(~θ)〉

> The individual terms 〈ψ(~θ)|Pi|ψ(~θ)〉 can be measured as discussed before

⇒ This is efficient as long there is only on number of O(poly(N)) terms with

nonvanishing coefficients in H
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Variational hybrid quantum-classical algorithms

Example: VQE for molecules

> Use the VQE for finding the potential energy surface of molecules

H2

H =
0.011280ZZ + 0.397936ZI +
0.397936IZ + 0.180931XX

LiH

H = −0.096022ZIII −
0.206128ZZII +
0.364746IZII + ...

BeH2

H = −0.143021ZIIIII +
0.104962ZZIIII +

0.038195IZZIII + ...
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Variational hybrid quantum-classical algorithms

Example: VQE for molecules

> Ansatz circuit: layered structure of single-qubit gates and entangling layers

Results for BeH2 at a given distance, 1000 measurements for each point
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Variational hybrid quantum-classical algorithms

Example: VQE for molecules

> Results from the VQE for d = 1 layer of the ansatz
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Variational hybrid quantum-classical algorithms

QAOA

> Combinatorial optimization problems

> Problem Hamiltonian is diagonal in the

computational basis

> Circuit structure is fixed

> In the limit of infinite layers provably

converges to the exact solution

VQE

> Ground states/low-lying excitations

> Efficient as long as H has only a

polynomial number of terms

> Hamiltonian exists only as a

measurement

> Great freedom choosing the circuit

Problem requirements

Available hardware

Expressiveness

> Best answer for the given set of resources

> Largely resilient to systematic errors of the device
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Variational hybrid quantum-classical algorithms

Remarks on VQE and QAOA

> QAOA can be seen as specific type of ansatz for the VQE

> Although QAOA was originally developed for combinatorial optimization problems it

can be applied to arbitrary Hamiltonians

DESY. | Introduction to Quantum Computing | Stefan Kühn | DESY Summer Student Program, 18.08.2025 Page 52

J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, H. Neven, Nat. Commun. 9, 4812 (2018)
A. Arrasmith, M. Cerezo, P. Czarnik, L. Cincio, P. J. Coles, Quantum 5, 558 (2022)

A. Arrasmith, Z. Holmes, M. Cerezo, P. J. Coles, Quantum Science and Technology 7, 045015 (2022)



Variational hybrid quantum-classical algorithms

Remarks on VQE and QAOA

> QAOA can be seen as specific type of ansatz for the VQE

> Although QAOA was originally developed for combinatorial optimization problems it

can be applied to arbitrary Hamiltonians

DESY. | Introduction to Quantum Computing | Stefan Kühn | DESY Summer Student Program, 18.08.2025 Page 52

J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, H. Neven, Nat. Commun. 9, 4812 (2018)
A. Arrasmith, M. Cerezo, P. Czarnik, L. Cincio, P. J. Coles, Quantum 5, 558 (2022)

A. Arrasmith, Z. Holmes, M. Cerezo, P. J. Coles, Quantum Science and Technology 7, 045015 (2022)



5.

The Deutsch-Josza algorithm

Grover’s algorithm

Complexity theory

Hybrid quantum-classical algorithms

Challenges for hybrid quantum-classical algorithms
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Challenges for hybrid quantum-classical algorithms

Barren plateaus

> Optimizing the parameters using a classical algorithms turns out to be challenging

> For a wide class of parametrized circuits the probability to have a non-vanishing

gradient along any direction vanishes exponentially with the number of qubits

⇒ Barren plateaus, gradient-based optimizers will fail

> Mathematical reason: concentration of measure, sufficiently smooth function is

concentrated in an exponentially small region around the mean
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Challenges for hybrid quantum-classical algorithms

Barren plateaus

> This happens for sufficiently random circuits (match the Haar distribution up to the

second moment)

> In practice this phenomena is already observed for relative simple ansatz circuits
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Challenges for hybrid quantum-classical algorithms

Barren plateaus

> It was shown that not only does the gradient vanish, but also the cost function has

exponentially narrow minima

> Not only the gradients vanish exponentially, but also the variance of the cost function

itself

⇒ Switching to a gradient free optimization algorithm does not avoid the problem
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Challenges for hybrid quantum-classical algorithms

Causes for barren plateaus

> Ansätze that are too expressive in a sense that they are able to relatively how

uniformly it explores the unitary space exhibit barren plateaus

> Circuits that generate a lot of entanglement (e.g. satisfying the volume law) exhibit

barren plateaus

> Nature of the cost function, global cost functions are introducing barren plateaus,

local cost functions only after a depth polynomial in the number of qubits

> Noise in the quantum device can wash out the features of the energy landscape

leading to barren plateaus
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Challenges for hybrid quantum-classical algorithms

Avoiding/mitigating barren plateaus

> If possible, one can avoid the causes of barren plateaus, however this does not

necessarily result in a trainable ansatz

> There is a plethora of proposals how to avoid/mitigate barren plateaus

Using modified cost functions
A. Wu, G. Li, Y. Ding, Y. Xie, arXiv:211:13209

Special choices of the initial variational parameters
Z. Holmes et al., PRX Quantum 3, 010313 (2022)

K. Zhang et al., arXiv2203:09376

Monitoring the entanglement during a gradient descent optimization in small subregions

and adapting to learning rate to avoid uncontrolled entanglement growth
S. H. Sack et al., PRX Quantum 3, 020365 (2022)

...

So far it seems that there is not simple way to avoid barren plateaus!
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Thank you for your attention!

Further reading

> M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information,
Cambridge university press (2010)

> J. R. McClean, J. Romero, R. Babbush, A. A. Guzik, New J. Phys. 18, 023023
(2016)

> J. Tilly et al., Physics Reports 986, 1-128 (1011)

> https://learning.quantum-computing.ibm.com/
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