Fast Parameterisation of electromagnetic showers in the LAr calorimeter:

Optimisation of the Frozen Shower Libraries

Matteo Agostini
DESY Summer Student Program 2007

University of Padua (IT)

September 14, 2007

- The FS Libraries
 - Libraries Features
 - The Merging Algorithm
- Studies of FS libraries
 - Optimisation of the clustering radius
 - FS libraries extended to higher energy
- Summary

- The FS Libraries
 - Libraries Features
 - The Merging Algorithm
- Studies of FS libraries
 - Optimisation of the clustering radius
 - FS libraries extended to higher energy
- Summary

Libraries Features

A Frozen Shower library store typically 1000 shower templates organised in:

- 10 energy bins (from 1 MeV to 1 GeV)
- twenty-five η bins (EMB, EMEC and FCAL η values)

Libraries Features

A Frozen Shower library store typically 1000 shower templates organised in:

- 10 energy bins (from 1 MeV to 1 GeV)
- twenty-five η bins (EMB, EMEC and FCAL η values)

A template is a collection of hits.

It is created by merging hits of full simulated low energy electron.

merging process:

- the two closest hits are identified
- if the distance is smaller than a defined distance R_{max} the pair is replaced by a new hit at the center of energy;

Libraries Features

A Frozen Shower library store typically 1000 shower templates organised in:

- 10 energy bins (from 1 MeV to 1 GeV)
- twenty-five η bins (EMB, EMEC and FCAL η values)

A template is a collection of hits.

It is created by merging hits of full simulated low energy electron.

merging process:

- the two closest hits are identified
- if the distance is smaller than a defined distance R_{max} the pair is replaced by a new hit at the center of energy;

- The FS Libraries
 - Libraries Features
 - The Merging Algorithm
- Studies of FS libraries
 - Optimisation of the clustering radius
 - FS libraries extended to higher energy
- Summary

Improvement of the clustering algorithm

Old algorithm:

the distance between hits is calculated in each step
 ⇒ the computing time grows as N³_{hits}

New algorithm:

- sorted lists are used to identify the closest pair of hits
- when a new hit is created the next closest pair of hits is calculated approximately in a linear computing time
 - \Rightarrow the computing time grows as N_{hits}^2 in the worst case!

To create a default library:

- the new alg takes

 10 h: 8 to simulate the events + 2 to create the lib

⇒ the new algorithm is 6 times faster!

Perforance of the new algorithm

Time needed to generate and record a template vs energy bin

- to generate 1 GeV energy bin with new algorithm is factor ~ 20 faster
- FS libraries created with two different algorithms are the same

Perfomance of the new algorithm

Time needed to generate and record a template vs energy bin

- ullet to generate 1 GeV energy bin with new algorithm is factor $\backsim 20$ faster
- FS libraries created with two different algorithms are the same

New viable studies:

- R_{max} optimisation;
- libraries extended to higher energies

- The FS Libraries
 - Libraries Features
 - The Merging Algorithm
- Studies of FS libraries
 - Optimisation of the clustering radius
 - FS libraries extended to higher energy
- Summary

Optimisation of the clustering radius

Purpose:

- to reduce the libraries size
 to speed up computing time by decreasing the total number of the hits;
- to not sacrify the accuracy of the shower description

- the defualt R_{max} = 5 mm is equals to the size of the strips in the S1 (in n units)
- $R_{max} = 5 \text{ mm} \Rightarrow \text{default}$ library size $\sim 50MB$
- as far as the library size is concerned increasing R_{max} above 20 mm it doesn't bring much

The important quantities

In order to check the shower profile and the energy distribution three quantities are used:

- deposited energy [MeV]
- $\Delta \phi = R_{xy} \frac{\sum_{i} E_{i}(\phi_{i} \phi_{0})}{E_{tot}}$ [mm]
- $\Delta \eta = R_{xy} \frac{\sum_{i} E_{i}(\eta_{i} \eta_{0})}{E_{tot}}$ [mm]

where ϕ_0 and η_0 are ϕ and η of the initial particle and the sum is above all the hits produced in the calorimeter

 $R_{xy} \sim 1.5$ in the LAr Calorimeter

Optimisation of the clustering radius

Purpose:

- to reduce the libraries size
 to speed up computing time by decreasing the total number of the hits;
- to not sacrify the accuracy of the shower description

- all the series below 28.3 mm appear to be very similar
- a reasonable compromise could be $R_{max} = 24.5 \text{ mm}$

Distributions for different cluster radius R_{max}

events generated using electron and photon libraries with $R_{max} = 5$ mm and $R_{max} = 24.5$ mm

- the distributions appears to be very close
- ullet there is also a small improvement in computing time with $R_{max}=24.5~\text{mm}$
- The size of the new library corresponds to 20% of the old one

- The FS Libraries
 - Libraries Features
 - The Merging Algorithm
- Studies of FS libraries
 - Optimisation of the clustering radius
 - FS libraries extended to higher energy
- Summary

FS libraries extended to higher energy

events generated using the default electrons library and the new library with an additional energy bin at 2000 MeV

- the distributions appears to be very close
- The improvement in time is $\backsim 12\%$ (0.692 \pm 0.009 \rightarrow 0.614 \pm 0.009)
- increase in library size by a factor ∽ 2

September 14, 2007

Summary

- the new clustering algorithm speeds up the FS libraries generation
 ⇒ new kind of studies viable
- on-going studies in order to optimize the merging radius (EMB and EMEC)
- higher energies libraries could be an important further possibility to speed up the simultion.