

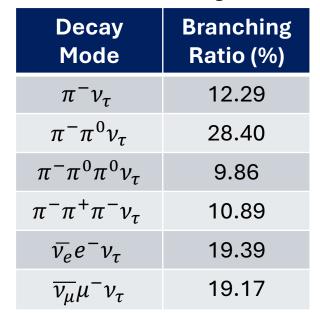
One-Prong Tau Reconstruction

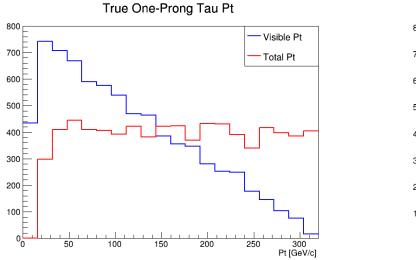
Ethan Martinez

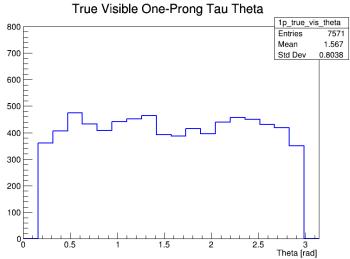
MAIA Detector and 10 TeV Studies

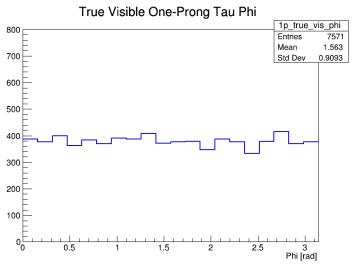
April 17, 2025

Generated Tau Events


- Generated 15,000 τ^- events in LCIO file with Python script
 - 1 τ^- per event
- $0 \le \phi \le 2\pi$ rad
- $10^{\circ} \le \theta \le 170^{\circ}$
- $20 \le pT \le 320 \text{ GeV/c}$


Simulated Branching Ratios

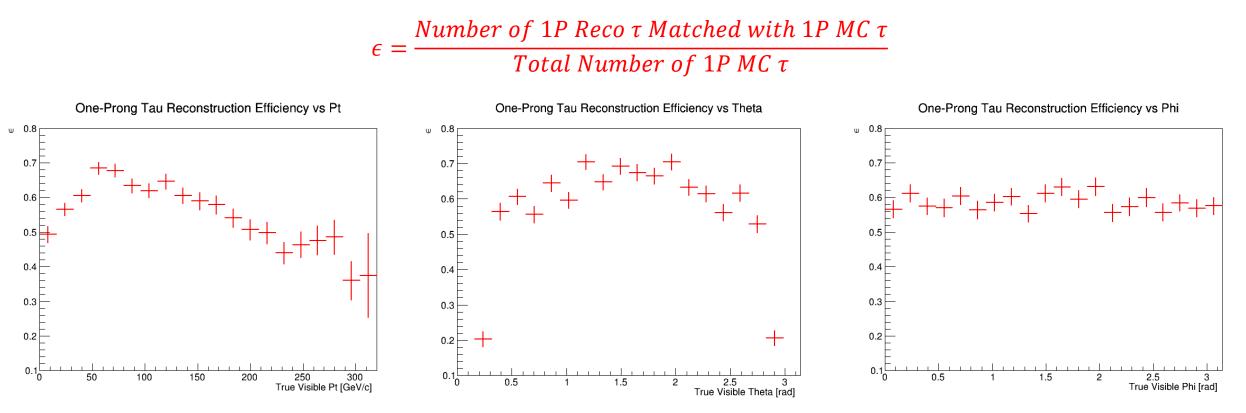



Simulated Tau Events

- Generated taus simulated in MAIA detector with ddsim from Fermilab 2024 tutorial
- One-prong decays make up ~50% of simulated decay modes
- Neutrinos appear to be taking away larger fraction of energy from high pT one-prong taus

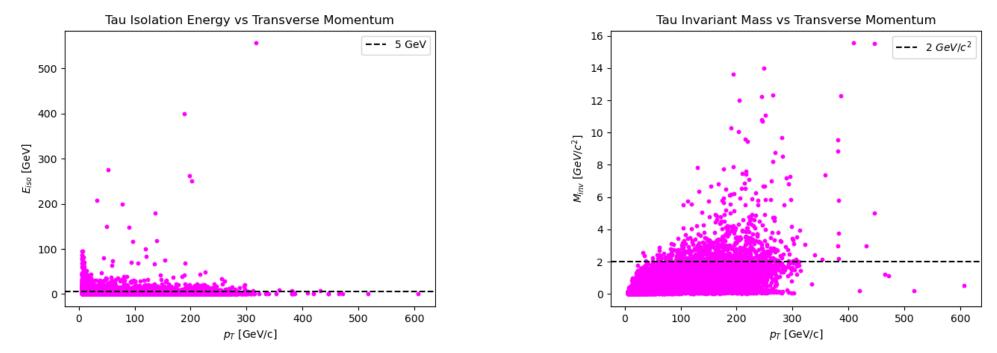
Reconstructing Tau Events

- 1. Tau decay products reconstructed with ACTS and Pandora
 - Marlin workflow from Fermilab 2024 tutorial
 - Outputs PandoraPFOs collection (reconstructed tau decay products)
- 2. TauFinder (MarlinReco algorithm) runs on PandoraPFOs
 - i. Charged particle seeded as τ candidate based on pT
 - ii. Search cone formed around seed
 - iii. Charged particles within search cone added to τ candidate, adjusting direction of cone for new combined momentum
 - iv. Neutral particles are added to τ candidate in same fashion
 - v. Momenta and energies of particles associated to τ candidate are combined into reconstructed τ
 - vi. Outputs collection of τ ReconstructedParticles
 - Think of these as independent τ PandoraPFOs that have links to associated τ decay product PandoraPFOs

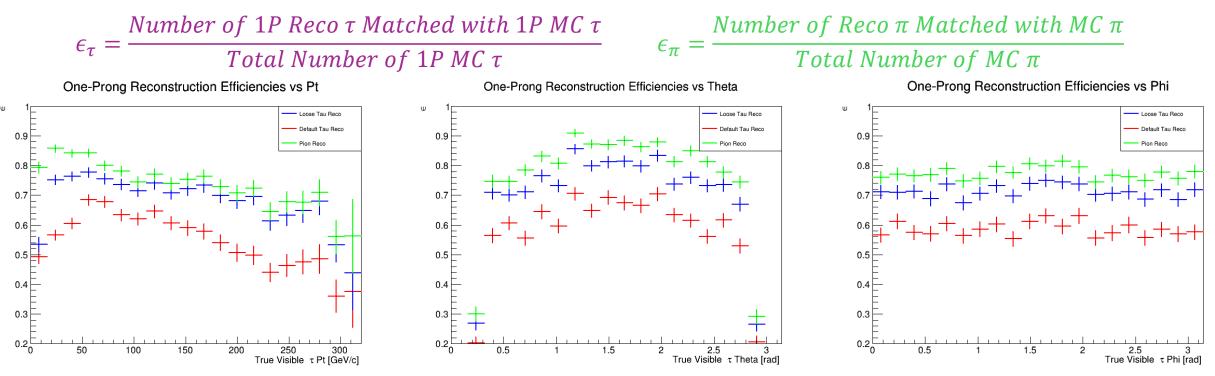

TauFinder Default Selection Cuts

TauFinder Selection Cuts (Sequential)	
Each PandoraPFO (Input Collection) pT	≥ 0.1 GeV/c
Charged Particle Seed pT	≥ 5 GeV/c
Tau Invariant Mass	≤ 2 GeV/c^2
Number of Charged Tracks Associated to Tau	≤ 4 & > 0
Number of Particles Associated to Tau	≤ 10
Tau Isolation Energy	≤ 5 GeV
TauFinder Cone Angles	
Search Cone Angle	0.05 rad
Isolation Cone Angle	0.2 rad

- Values obtained from Lorenzo Valla
 - Studied for 3 TeV MuCol_v1 geometry


Benchmark Reconstruction Performance

- Average one-prong reconstruction efficiency appears to be at ~60%
- Losing efficiency at low (< 50 GeV/c) and high (> 100 GeV/c) pTs


Investigation of TauFinder Selection Criteria

- Tau isolation energy threshold set at 5 GeV
 - Losing ~12% of taus (mostly those with low pT)
 - Planning to set a pT dependent isolation energy threshold
- Tau invariant mass threshold set at 2 GeV/c^2
 - Losing ~5% of taus (mostly those with high pT)
 - Planning to get rid of invariant mass selection cut all together

One-Prong Reconstruction Performance

- Loosened tau isolation energy and invariant mass cuts such that they are negligible
 - Boosted one-prong efficiency by ~10% on average
- Drop in one-prong efficiency at large pT due to pion reconstruction efficiency
- Improvement of one-prong efficiency to be made at low pT
 - Likely due to lower threshold set on charged particle seed pT (currently set at 5 GeV/c)

Conclusions

- Efficient one-prong tau reconstruction is possible
 - Currently achieving ~70% reconstruction efficiency on average
 - Restricted by pion reconstruction efficiency
 - Need to remove/loosen selection cuts in TauFinder algorithm
- Next steps involve studying three-prong tau decays and finally adding BIB to simulated tau events