

Charged Pions in MAIA

Sarah Demers, Ethan Martinez, and Gregory Penn Yale University

Quick Reminder

- Realized that track-cluster matching is called ~20 times in Pandora config (link to last presentation)
- Forcing all instances of track-cluster matching to have near-infinitely loose cuts yields better charged pion reconstruction efficiency
 - Cluster lower hadronic energy cut \rightarrow 0 GeV
 - Layers of calorimeter to search for hits to associate to track \rightarrow 100
 - Maximum track-cluster perpendicular distance \rightarrow 100 m
 - Maximum track-cluster parallel distance \rightarrow 100 m
 - Minimum cosine angle between track and cluster \rightarrow 0

Simplify!

- Results from those settings aren't interpretable or realistic
- Work towards simplicity & interpretability:
 - Run only the strictly required elements of PandoraPFA, build on top of it

All Pandora Algorithms

- 1. Track selection & hit preparation
- 2. Clustering
 - 1. Photon clustering
 - 2. Fast photon identification
 - 3. Cone clustering
 - 4. Topological cluster merging
 - This involves **9(!)** edge cases that recluster, targeting various phenomena (some involving tracks)
 - 5. Re-clustering
 - 6. Photon identification and recovery
 - 7. Fragment removal
 - 8. Formation of particle flow objects

"Most Basic" Pandora

- 1. Track selection & hit preparation
- 2. Cone clustering
- 3. Formation of particle flow objects

Track Selection & Hit Preparation

Track selection

- Track reaches ECal
- Track radius of curvature not 0 mm
- σ(p)/p > 0.15
- Is a parent track
- Tunable selections dependent on config, see more (details in slide 19 here)
- Calorimeter hit preparation
 - Energy cut (in MIP, separate values for ECal and HCal) and calibration
 - Detector geometry associated with hits (pixel size, layer in calorimeter)
 - Removal of isolated hits
 - Cut based on # of other hits within a particular distance
 - Flagging MIP-like hits, used for identifying minimum ionizing tracks in the calorimeter
 - Upper energy threshold
 - Upper limit on # of adjacent pixels in same layer with energy above threshold
 - Hits are then ordered first by calorimeter layer and then by energy
 - Innermost layer to outermost layer

Link to Pandora paper

Cone Clustering

- Clusters seeded with direction of tracks projected to the ECal face
- Loop over each layer:
 - Compare compatibility of each hit in layer to each hit in previous layer •
 - Hits are clustered together if they are within specified parallel and perpendicular distance, calculated ٠ with respect to the cluster direction axis A: cone half-

$\overrightarrow{r_{ij}}: \text{displacement between hits} \qquad d_{11} = \overrightarrow{r_{ij}} \cdot \widehat{u} \qquad d_{12} < d_{11} \tan A + b D_{pad} \qquad b: \text{ # pixels added} \\ \overrightarrow{u}: \text{ directions of clusters} \qquad d_{12} = |\overrightarrow{r_{ij}} \times \widehat{u}| \qquad d_{12} < d_{11} \tan A + b D_{pad} \qquad b: \text{ # pixels added} \\ \text{ to core radius} \qquad d_{13} = |\overrightarrow{r_{ij}} \times \widehat{u}| \qquad d_{14} < d_{11} \tan A + b D_{pad} \qquad b: \text{ # pixels added} \\ \text{ to core radius} \qquad d_{14} = |\overrightarrow{r_{ij}} \times \widehat{u}| \qquad d_{14} < d_{11} = |\overrightarrow{r_{ij}} \times \widehat{u}|$

- A, b determined from config file ۲
- Dpad read from geometry file ٠
- If hit not within distance of any others, it seeds its own cluster ٠
 - New cluster direction is radial distance from interaction point

Link to Pandora paper

PFO Creation

- Track-cluster matching
 - Tracks are propagated through the first 9 layers of the calorimeter (tunable in config)
 - If a hit is found within a set distance (tunable in the config), an association is made

- PFO identification
 - I won't go into detail today

<u>Link</u> to Pandora paper

"Most Basic" Pandora

- Run with the same extremely loose track-cluster parameters as previous week (cuts on slide 1):
- Turn off everything but Cone Clustering and PFO Creation

Pandora vs. "Most Basic" Pandora

Pandora vs. "Most Basic" Pandora

Event Displays

- Need more than the plots that I've been showing
 - Where are the tracks? The clusters?
- With the help of Thomas Madlener and Anna Zaborowksa, I was able to run PandoraMonitoring
- Still playing around with the event display:
 - Don't know how to zoom in
 - Tracks not being visualized?
- For Cone Clustering + PFO Pandora, it shows 4 PFOs:
 - An electron with almost all the energy of the charged pion → misidentified!
 - Two neutrons and a photon \rightarrow misclustering!
- In principle, we can watch Pandora as it goes through the algorithm

Next

- Debugging the track-cluster inefficiency is still ongoing
 - Tightening those cuts even a little is giving poor efficiencies
 - Currently working on tracks on event display, track-cluster distance plots, and print statements
- Once that is fixed, ideally:
 - Add BIB \rightarrow should we begin to set this up now? Do we have digitized charged pion gun events w/ BIB?
 - Add topological cluster merging to Pandora \rightarrow should improve charged pion ID efficiency

