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About me

Professor at the University of Valencia (Spain), researcher at IFIC.
https://webific.ific.uv.es/web/

IFIC team leader of the LHCb experiment at CERN.
https://Ihcb.web.cern.ch/

Expert on heavy flavor physics (DELPHI, BaBar, Belle I, LHCD)
Hardware and physics analyses.

Strong interest on the use of new hardware architectures and Al for HEP, in particular for
trigger systems (aiming to detect long-lived particles).

Previous coordinator of the hw accelerators WP of the Real Time Analysis project at LHCDb.
Founder of the Computing Challenges (COMCHA) network in Spain https://comcha.es/
Executive member of the AIHUB-CSIC. https://aihub.csic.es/en/

Previous executive member of ARTEMISA committee at IFIC, a platform based on GPUs
for Machine Learning. https://artemisa.ific.uv.es/web/

Working with an amazing group of people from ATLAS and LHCb !!


https://webific.ific.uv.es/web/
https://lhcb.web.cern.ch/
https://comcha.es/
https://aihub.csic.es/en/
https://artemisa.ific.uv.es/web/

The HIGH-LOW project at Valencia

Jiahui Zhuo Valerii Kholoimov Miriam Lucio

Arantza Oyanguren Volodymyr Svintozelskyi Alvaro Fernandez

Alberto Valero Francisco Hervas
Francesco Curcio

i

Luca Fiorini Antonio Cervello Héctor Gutierrez



QQV The HIGH-LOW project at Valencia

Design of HIGH performance algorithms for LOW power sustainable hardware for

LHC experiments and their upgrades
Pls: L. Fiorioni (ATLAS) & A. Oyanguren (LHCb)

Funded by the Spanish Ministry of Science and Innovation (TED2021-130852B-100)

Complex event reconstruction

Low latency

Core challenges

in HL LHC High throughput

Low power consumption

Designing Al-driven,
high-performance algorithms
optimized for low-power,
sustainable hardware in LHC

upgrades.

— Extensible to other HEP (and non-HEP) experiments which rely on CPU
architectures (lack scalability, significant energy constraints).




The HIGH-LOW project at Valencia

The energy consumption in data centers is rising significantly due to Al utilization
and other digital technologies:

ENERGY FORECAST
9000

Bl Networks (wireless and wired)
8000 1 mmmm Production of ICT

Consumer devices (TVs, computers, mobile phones)
Bl Data centers

7000 A

» 50-60% IT equipment

» 35-45% Cooling systems
(HVAC, liquid)

» Few %: lighting, backup

2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030 generators, power supplies,
Year

security and monitoring
systems, etc...

Can we make a difference using specific hardware and optimized software?
6



NZ

it's more env‘xronmema

gy SHERIN SHIB

Kev Takeawa\‘s

(Each ChatGPT-4 query
requires about 2.9 watt-hours

i.e, X 10 Google search)

. d'Thank Youl
g'Please agpen Al'Tens O

. i,
efficient) 10 skip the nicetie

MuUT
U EDITED BY MELISSA MALA

e company spends tens of

Subst

The HIGH-LOW project at Valencia

Sign In

to
§ Millions

Share &

APR 21, 2025

millions of dottars on

» 1GPT.
ease” and “thank you to Cha I

_ €he New York Eimes
¢ Artificial Intelligence ,

ADVERTISEMENT

Saying ‘Thank You’
u to ChatGPT
Cgstly. But Maybe [p Worth the I;;ice

S ﬂlV'Odel es A A F red t A B I Bow A Ha . i()ll
WICIO O’ ates .

Spendl g A Orecas; 'SSUpe B |

- . ,UCI ation!

|
I
|

I



The HIGH-LOW project at Valencia

Quantifying is important to take decisions.... we try to do that at IFIC

Noise isolated small room at the IFIC experimental lab area with racks 8
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The HIGH-LOW project at Valencia

Rack K RETEX LOGIC-2 A600 42U F1000 PH
APC Metered Rack PDU ZeroU 2G AP8
SWITCH D-LINK DXS-1210-28T 24x 10GB

HLO1

2 x Intel Xeon Gold 5318Y (24
cores), 256GB DDR4 RAM,
80TB storage with NVIDIA
GPUs RTX A5000 and

RTX A6000 Ada

HLO2

AMD EPYC 9474F,

768GB DDR5 RAM,

160TB storage with NVIDIA
GPUs RTX A6000 Ada and 2
H100 NVL

Other small devices to measure
fan speed, temperature, etc...

a1
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Real Time Analysis at LHCb

Proton-proton collision 2028 bunches of protons per beam
Beam energy of 7 TeV
Luminosity 1034 cm2 s?

- / 10*! protons per bunch
e o .;.‘,'

Lheas el »°, ) . ..
\w‘“ AN S Crossing rate 40 MHz, i.e. 40 M collisions/s

and ~ 1 MB data from detectors

— 5-40TB/s

We need to select the events to be persisted!

Google+ {9)+6

~0.3TB/s .



Real Time Analysis at LHCb

Tracking, particle identification (RICH, muons) and calorimeter systems + magnet

(millions of readout channels)




Real Time Analysis at LHCb & /Zé___

Exploiting hardware accelerator technologies in event reconstruction:

— Use more than one kind of processor or cores to maximize performance and
energy efficiency.
— Exploit the high level of parallelism to handle particular tasks.

Graphic Processor Units (GPUs) Field Programmable Gate Arrays (FPGAs)

- Multicore processors, highly commercial - Programmable and flexible devices
- High throughput (# processed events / time) - Low latency
- Ideal for data —intensive parallelizable applications - | ow power consumption

- ldeal for compute- and data-intensive workloads



Real Time Analysis at LHCb

7 Detector response
nomemoty ob) ;.._u ..... ¢ mmfmw'i’ummmm

5TB/s

Event builder
& event filter 1

Event Builder
Network
(InfiniBand 200G)

1 MHz

f
o]o] Jo]e] gpige Buffer storage
(Ethernet 10G/100G)

Up to 40 PB disk storage

100 KHz
10 GB/s

LHCb data
center at Pit 8

15



Real Time Analysis at LHCb

Allen: the LHCb high-level trigger 1 (HLT1) application on GPUs.
[LHCB-TDR-021] — Fast detector reconstruction in O(500) Nvidia RTX A5000

Raw data

Selection decisions

R
Side View pear, HEAL Ma M5 \ O\

SciFi RICH2
Tracker

Magnet

16

[Com. Softw Big Sci 4, 7 (2020)] https://allen-doc.docs.cern.ch/



Real Time Analysis at LHCb

[Allen project] e Portable: executed on several architectures: CPU, GPU

e Modular: design allows various execution sequences
e Total of approx. 250 algorithms used in data-taking
e It has to reduce in real time 40 Thits/s by a factor 50
e LHCb simulation samples available

Open-source!

Case study for power consumption measurements

Raw Data
'

Algorithms inside the Allen framework

Global
Event cut

VELO (Retina) A — SciFi decodin T i
g . Calo decoding
clustering B decoding
1 | Pk pgp— i
VELO decoding ‘::JJ;;:‘::S% | | SciFiSeeding | Muon ID Calo clustering
|
l ‘ : 1!' v v 1 i
. ¥ *  VELO-SciFi Filtering used SciFl | |
Elect ID
VELO tracking Forward | | : Matching | seeds & UT hits I ectron
Tracking
- i | : | l
ind primary - Downstream Brem recovery
vertices Parameterlzed ‘ tracking !
Kalman Filter N T _7

Selection lines (Inclusive & exclusive)

Sel d Written to storage buffer
S et St for HLT2 processing
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https://gitlab.cern.ch/lhcb/Allen

Impact of hardware on power consumption

Power consumption measurements can be performed using dedicated external
hardware or using specific software to access the buil-in sensors.
In our case, we are based on:

e A metered power distribution unit (PDU)
e Relying on device drivers (Nvidia DCGM)
e Reading of CPU performance counters (ACPI, RAPL)

Motherboard

Metered powg GPUO Q

S Power
distribution unit _
(PDU) Supplies

GPU 1

& & Directly measureble
&5 Only indirect measurements




Impact of hardware on power consumption

APC PDU ZeroU
2G APS

Power (W)

[a—
S
]
o

900

800

700

600

320M events

CPU + NVIDIA RTX 6000 Ada

il I T T T I T T T I I

M~\

Rise and fall? Plateau

Allen execution

— PDU

N7

A -

1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1
0 500 1000 1500

Metered powg
distribution unit POW?I’ FANS
(PDU) Supplies

& ® Directly measureble
Only indirect measurements

Motherboard

o rav @
CPUQ DISK O

:

Time (s)
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Impact of hardware on power consumption

Advanced Configuration

320M events

CPU + NVIDIA RTX 6000 Ada
— T . r r 1 ]

g : | ' |
and Power Interface (ACPI) = 1000 f . - W
E L
C
[l
900 - -
\
800 [ - A\MOS _
: nCP\1S ‘\J‘XO poOL! '
. \cO
700 | \dent .
Hardware abstraction ;
interfaces between the 600 |- PDU (Qﬂ |
hardware and the OS | -==+ ACPI b
| 1 | L 1 | 1 L | I
0 500 1000 1500
Time (s)
Motherboard
RAM Q
Metered powg 9
distribution unit POWGT CPU HISRo
(PDU) Supplies

& ® Directly measureble
Only indirect measurements

CRPS power supply
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Impact of hardware on power consumption

Running average power limit
(RAPL) based on CPU
performance counters

Last Level Cache
Memory Controller|
graphics

* [ Package O powerplane 0

] Powerplane 1[0 DRAM

B Psys

320M events

CPU + NVIDIA RTX 6000 Ada

o~ 1 — 1 T T T | ]
2 1000 J“'L-—.m s . -
) [ ]
z ]
(@]
=800 - Q% -
KL | ]
- — PDU .
600 | —— CPUO [
I —— CPU I
- A —— ram(
400 - WOV —— ram1l .
mMmpP . 1
A (3()Pf5\9g_\b\e Allen is executed ]
L g ned! :
w0l S only on CPU O ]
r i \ s PR TV Saliail A A A-]
- Y
OF 7 Ll ol N
0 500 1000 1500
Time (s)
Motherboard
o
Metered powg Power GPUO
distribution unit 3 i
PDU upplies
o GPU 1
& ® Directly measureble 1
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Impact of hardware on power consumption

NVIDIA Data Center GPU
Manager (DCGM) for power
consumption measurements

(0 0== MANAGEMENT NODE == 3
O D B . | DC Cluster Management Software
T )

NETWORK

ADMINISTRATOR

(oo== CcOMPUTE NODE °®)

‘ | Management Software Agent

: I APls
CRLE & DC GPU Manager
Tesla Enterprise Driver

T
o <o

o <@

CLI

Metered powg
distribution unit
(PDU)

Power

Supplies

& ® Directly measureble

@

Only indirect measurements

Power (W)

[a—
o)
o]
o

800

600

400

200

320M events CPU + NVIDIA RTX 6000 Ada
T T 1 — 1 T 7]
- Ff“'\ A AP —
B = N
- —— PDU L -
i —— GPUO '
—— GPU 1
B Allen is executed ’
only on GPU 1
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0 500 1000 1500
Time (s)
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Impact of hardware on power consumption

CPU + NVIDIA RTX 6000 Ada 320M events

Main components have constant
power consumption

- — PDU

=== ACPI

— CPUO & .
i — GPU I 7 What is the cause of the power

consumption rise?
_.j....I...I. P T T T B
0 100 200 300 400
Time (s)

Metered powg
distribution unit
(PDU)

& ® Directly measureble
& @ Only indirect measurements

Fower FAN
Supplies

Motherboard

| B e
GPU O
Q D|S|<O0
CPU

S
GPU 1
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Impact of hardware on power consumption

CPU + NVIDIA RTX 6000 Ada 320M events

— CPUO
| — GPU 1 ]
[ T | N S [N [N ) - S| (R [N [N P N (| S | BoE
0 100 200 300 400
Time (s)

Fan speed measurement device

Metered powg
distribution unit
(PDU)

& ® Directly measureble

Power

Supplies

Only indirect measurements

Motherboard
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Power (W)

Impact of hardware on power consumption

Fans spooling up

/ 320M even\ 320M events
1 v v T T 1 T T v ] _..|.|||||||||||||||lll_5.25

1000 - ~ < % 80 1 &
/ @7 g0 15.00
- HL 7 b} __ 1 [72]
Plateau when £ 1475 2
.- - . [ [ ; =
600 [ fans stabilise - a1 %} PR
—— CPUD 5 ]
400 |- —— GPUL ] 0r . J4.5
: Fans stabilise _
40 b 14.00
200 . [ & —— CPUO ]
] ! GPUI 5
i :’,‘d 0 —— Tan speed 23' 5
] A T T T R T T PR R,
3.50
0 100 200 300 400 0 100 200 300 400
Time (s) Time (s)

Fans activation is the responsible of the increase in power consumption

Motherboard
RAM o
Metgred powg Power Q DISK OQ
distribution unit ) CPU
(PDU) Supplies pisk19
& ® Directly measureble 75
& @ Only indirect measurements




Impact of hardware on power consumption

The hardware option may affect the power consumption

Tests with CPU and two different GPUs
Intel(R) Xeon(R) Gold 5318Y
NVIDIA RTX A5000
NVIDIA RTX 6000 Ada

40 M events, PDU power usage
L IR L B

ot I Targel platform ] g 80
E 1000 — AdalO41Ws ] s F
=% L A3000 130.8 Ws 7 g
g [ —— CPU9330Ws | S 70r
é 900 - ] = [
L = C
e L B 60
g I X
Z 800¢ ] ]
=~ i . S0F :
[ i o ] H i
700 - : - "r ) :
r ] 40r H Target platform
C . Co Ada .
600 - | 1 - A5S000 ]
FA ] 30r 4 — CPU ]
] ! -
I T R TR N N N SN TR S NN TR SN TN NN AN TR WA T S NN SO ST SN S R N N Lo b v v by o by by by o
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Time (8) Time (s)

In general, more performant devices with faster execution time means

less power consumption (inverse correlation with throughput) e



Impact of hardware on power consumption

Allen is optimised for GPUs: execution on the CPU leads to low instantaneous

power consumption but in total consumes a lot of energy due to a slow and
long process

40 M events, PDU power usage 40 M events, PDU power usage

g _I I T T T T I T LI T | T LI T | T T T T | T T T T | T T T T | ] 6 :I I T T T T I T T T T | T T T T I T T T T I T T T T I T T T T I 4

Z Target platform 1 <8t ]
E 1000 | _— Ada 104.1 Ws ] %) i
=9 AS000 130.8 Ws = i

= - —— CPU9339Ws - ‘g 75 E CPU J
£ 900 - =) [
S r 1 L L
] - . ) i

Sl N7 B -
Z 800 . [
A~ i ] [

I ] 65 F -

700 . i 1

600 — — 60 _ @ Target platform _:

- | ] : U

-I | I S T W TN TR TN N AN SO TN TN T AN TN SO TN T A TR TN T AN SO T A | ] 55 T [T T TN AN TR TN TN [N ST S ST A T T T T N Y T T A T T T W —

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

Time (s) Time (s)

Hardware and software developments should work hand in hand!
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Dependence with the hardware utilization:
GPU parallelisation procedure (# CUDA streams)

Hardware utilisation

Total power consumption 10Mm events
A L L L L L L L

Power consumption (W)

700 |

600:

CUDA streams
— 04: 25.1 KkW-s
— 12:20.7 kW:s
— 16: 19.6 kW-s
— 32:228kW:s

] Y

L1 PRI
80 100

L I L 1 L
120 140
Time (s)

10M events

Power consumption (W)

CUDA strcams i
— 04:25.1kW-s |
12: 20.7 kW-s |
— 16: 196 kW-s
32:22.8kW-s

100

120 140
Time (s)

ALOM events

80 100

W |

]

CUDA streams 1
— 04 251kW:s A
— 1% 207kW-s ]
— 16 19.6kW-s 7]
— 3% 228kWs

e

60 80

P I T T N T
100 120 140
Time (s)

A non-proper use of the hosting hardware configuration leads to a slow
execution, i.e., larger time — increase of the energy consumption
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Impact of hardware on power consumption

Checking other hardware architectures:

Offloading some tasks to FPGAs (RETINA framework — Pisa group) Stratix 10 (1SG280HN2)
[Framework TDR for the LHCb Upgrade Il, CERN-LHCC-2021-012]

—_
N

I
Realﬁime reconstruction on FPGAs with the “artificial retina”architecture

[
[NIMA 453 (2000) 425-429]
AV
- ¢ - 4 - ~ >
@ VELO decoding & clustering & tracking = oy T B = ol
@ SciFi decoding TN e N
@ UT decoding & clustering 25 S
® VELO-UT pattern recognition = 0 s
@ SciFi pattern recognition g 9N o . x
@ Primary Vertex Finding ~ < L o .
. g - '\:k
u
Detector layers >
Tracks u,v track parameters
[ ]

Clustering of the VELO detector already implemented for Run3 in FPGAs !

e Tracking in development for Run5 (~2030), coprocessor testbed established at
CERN for tests in realistic conditions



Impact of hardware on power consumption

Offloading some tasks to FPGAs

366.00 kHz Seeding (without RetinaDWT)
675.39 kHz Seeding (with RetinaDWT Axial)

2227.94 kHz Seeding (with RetinaDWT Axial + Stereo)

Seeding algorithm for making
tracklets in the last LHCb
e tracker (SciFi) in FPGAs:
--_----_____________________________-________________f’f"_‘i":'i?f'_f".".‘f?_i“fif‘.‘l‘.“fff‘?ff’.‘ff.‘.t‘f’l_*_?i"_‘f’f’f__}> throughput increases by 30%

Time (in seconds) vs Power Consumption

247.51 kHz Velos-SciFi Matching (without RetinaDWT)

364.09 kHz Velos-SciFi Matching (with RetinaDWT Axial)

Throughput (kHz)

m« —— Seeding in GPUs — Saving 6.2 mW-s/event
f = Partial seeding in FPGAs
5 o — Fullseeding in FPGAs (for 30 MHz rate: 186kW/s)
% 100 _|_ . |
|
I =N *

60 65 70 75 80 85 90
Time (seconds)

[https://cds.cern.ch/record/2888549]

— Use hybrid systems (FPGAs + GPUs) to take benefits of each one
30



Power Consumption (W)

Software optimization

Dependence with the software: how well we program? = nﬂ
D
. Cc
A basic known example: 5
Sorting 4M elements with Bubble and algorithms:
. Power Consumption of RTX6000 GPU for sorting algorithms Power Consumption of AS000 GPU for sorting algorithms
200 —— Bubble sort |
~— Bitonic Sort

—— Bubble sort

g
175 g g 2001 ~—— Bitonic Sort
RTX 6000 BITONIC: 56.12 J & _ “ A5000 BITONIC: 92.7829 ]
2
RTX 6000 BUBBLE: 9133.6 ] £ 150 A5000 BUBBLE: 34133.48 ]
. (18176 cores) (8192 cores)
100 A
100 1
75 A
50 50 ‘
|
25 A _J
o 10 20 20 40 50 50 70 o 25 50 75 100 125 150 175

Time (s)

— Two orders of magnitude difference in energy consumption,
with a high dependence of the hardware utilization!

Time (s)
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Software optimization
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2.4.5 Power consumption

The effect on the power consumption from the
execution of Downstream algorithm in the HLT1
sequence is studied in the following and shown in
Fig. 17. Several techniques are employed to mea-
sure the power consumption including the use of a
metered power distribution unit (PDU!) within the
rack, analysis of device driver outputs (e.g., Nvidia

'An APC PDU AP8858EUS3 is used in this work.

https://arxiv.org/abs/2503.13092

_ 1900 LHAC Simulation n
E a Allen sequence ]
g 1800 Energy consumption: 119.6 pf/event
a n Allen sequence + Downstream ]
N Energy consumption: 127.0 uJ/event ]
g 1700 F 3
=] [ ]
o B ]
S 1600 |- WW .
b5 u ]
Z C ]
& 1500 - E
1400 & -
1300 F L =
1200 :u 'IJ PR R TR SR TR TR TN [N TN TN TN SN TN SN SO ST SO S S | :
0 200 400 600 800 1000

Time (s)

Fig. 17: Power consumption with Allen software

running over 3.2M Bgs — ¢¢ events without (blue)
and with (orange) Downstream algorithm. The power
consumption is measured using metered rack PDU
AP8858EU3 with an average readout frequency of 2 Hz.
The moving average filter with window of 20 points
is applied. The measurements are obtained using the
NVIDIA RTX 6000 Ada Generation GPU card.
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https://arxiv.org/abs/2503.13092

Software optimization

In general: HIGH THROUGPUT <> LOW POWER CONSUMPTION

- Proper parallelization

-  Memory usage

- Balanced work distribution

- Instruction-work organization

To take into account:

- Performance vs energy

Ex: which is the cost of 0.01% gain in efficiency for a tracking system/clustering
algorithm? Per track? Per event? Per year? Vs final physics performance?

e Aiming to develop software tools to check the power
consumption of an algorithm in a specific hardware

33



Conclusions & prospects

e Use the best and more efficient available hardware (vs €)
e Optimize the utilization of the hardware

e Optimize the software design
e Take advantages of the correlations among them

e Be open to hybrid systems

e Quantify the gain! (use of monitoring at software level)




Conclusions & prospects

e Power measurements vs temperature

e Fan speed reduction

e Other architectures (ARM)
e Evaluation of hybrid systems

e Automatized recipes

e Applications (ex: generators, porting MADGRAPH to FPGAs)

THANAS|
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