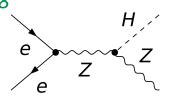
Photon colliders: simulation and di-Higgs production as physics case

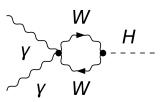
Marten Berger

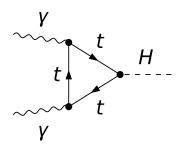
In cooperation with
Johannes Braathen, Gudrid Moortgat-Pick
Georg Weiglein, Monika Alexandra Wüst

Contents

- Gamma-gamma collider
- Di-Higgs
- Light-by-Light




Introduction


High energy photons collisions (γγ and e-γ) offer a complementary physics program to e+e-:

TESLA TDR 2001, JLC TDR 1998

- The Higgs boson is produced in the s channel
 - The electron beam energy is lower than what is required in e+e- collisions (65-80 GeV vs 125 GeV)
 - O At higher center of mass energies, all phase space is available for producing the Higgs boson → higher mass reach for heavy Higgs bosons than e+e- at the same center of mass energy
 - γγ can couple to spin-0 resonances whereas e+e- require the production of another spin-1 particle
 Ginzburg et al. 1983
 - complementary probe of the scalar sector
- Polarization of both electrons and photons
 - Allows for a rich study of CP properties in the scalar sector

Complementarity ee vs yy

- γγ collisions can produce **heavy Higgs bosons** with masses >1.5 times higher than e+e-:
 - \circ e⁺e⁻ \rightarrow HA vs. $\chi\chi \rightarrow$ H, $\chi\chi \rightarrow$ A

Mühlleitner, Zerwas 2006

- e-y collisions can produce **charged particles** with masses higher than pair-production in e+e-:
 - \circ e- $\chi \rightarrow \tilde{e}\tilde{\chi}^0$

Kanemura 2001, Nauenberg 2001, Mühlleitner 2006

- Ability to control the photon polarizations provides a powerful tool for the exploration of CP properties of any single neutral Higgs boson
 - The J_z =0 $\gamma\gamma$ initial state can form a CP-even or a CP-odd state using linear polarizations of the laser beams

 Telnov 2020, 2023
 - CP-even Higgs bosons (h⁰, H⁰) couple to linearly polarized photons with maximum strength for parallel polarisation vectors
 - CP-odd Higgs boson (A⁰) couple to linearly polarized photons with perpendicular polarization vectors

FH Particle Physics, April 2025

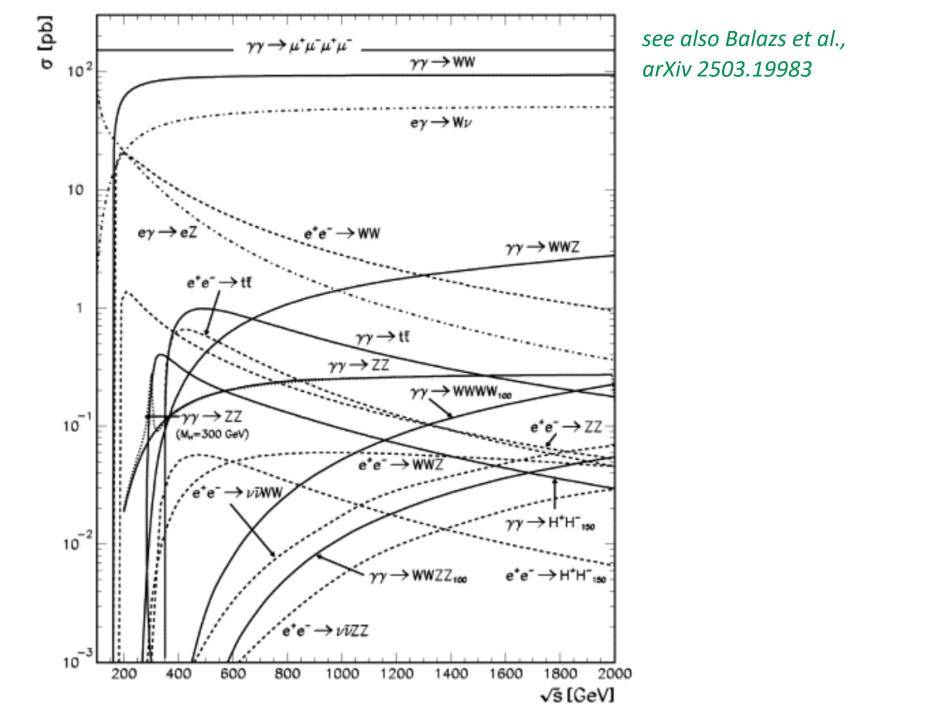
Physics Opportunities

Di-Higgs production and measurement of trilinear couplings

Jikia 1994, Bharucha et al. 2021 MB, Braathen, Weiglein, Moortgat-Pick

- Enhanced production cross sections of any charged particles by a factor of ~10 compared to e+e- (e.g. SUSY, etc.)

 Mühlleitner et al. 2006, Kanemura 2001
- e-γ-options extends kinematic reach for charged particles (BSM, SUSY, heavy Higgs, etc.)
- Access to hadronic and electromagnetic structure of photons via photon-photon and photon-electron scattering
- Access to precise measurement of the two-photon decay width of the Higgs boson due to the higher rates


 Gunion et al. 1997
- Searches for BSM particles in light-by-light scattering

 | Inan, Kisselev 2020 | MB, Moortgat-Pick | MB, Moortgat-Pick |
- Spectroscopy of C-even resonances (e.g. in multi-quark states, glueballs) Telnov et al. 2023

FH Particle Physics, April 2025 Berger et al.: Photon Collider 4

Physi

- Di-Higgs
- Enhance compare
- e-γ-optioetc.)
- Access to photon-e
- Access to to the hiç beyond t
- Spectros FH Particle Physics,

t al. 2001

2001

JS,

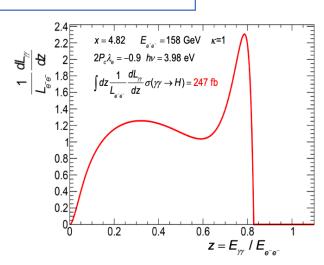
d

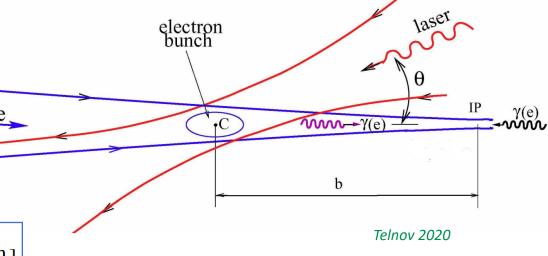
due

997

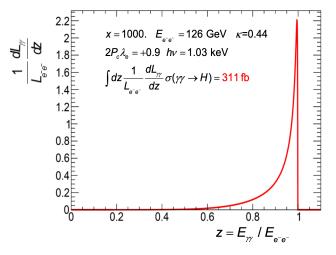
1. 2023

glein, GMP


Photon collider


- Addition to e^+e^- colliders
- Compton backscattering
- Getting access to $\gamma\gamma$ and γe processes

$$\omega_m \approx \frac{x}{x+1} E_0$$
 $x = \frac{4E_0 \omega_0}{m^2 c^4} \simeq 15.3 \left[\frac{E_0}{\text{TeV}} \right] \left[\frac{\omega_0}{\text{eV}} \right] = 19 \left[\frac{E_0}{\text{TeV}} \right] \left[\frac{\mu \text{m}}{\lambda} \right]$



- a) optical
- b) XFEL-like

Barklow 2024

Berger et al.: Photon Collider

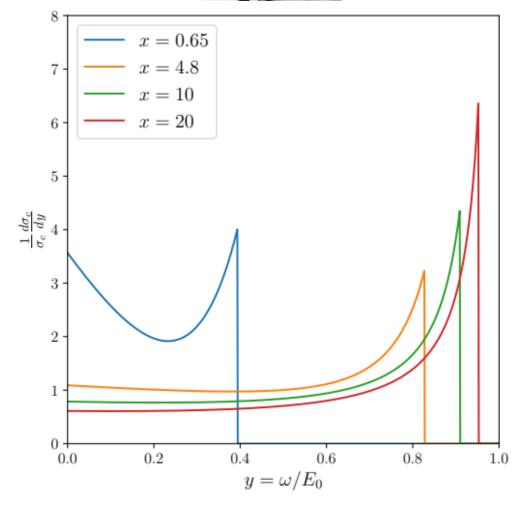
How to get the beams?

Ilya Ginzburg '83

• Compton backscattering $\sigma_c = \sigma_c^{np} + \lambda_e P_c \sigma_c^1$

$$\sigma_c = \sigma_c^{np} + \lambda_e P_c \sigma_c^1$$

$$\sigma_c^{np} = \frac{2\pi\alpha^2}{xm_e^2} \left[\left(1 - \frac{4}{x} - \frac{8}{x^2} \right) \ln(x+1) + \frac{1}{2} + \frac{8}{x} - \frac{1}{2(x+1)^2} \right]$$


$$\sigma_c^1 = \frac{2\pi\alpha^2}{xm_e^2} \left[\left(1 + \frac{2}{x} \right) \ln x + 1 - \frac{5}{2} + \frac{1}{x+1} - \frac{1}{2(x+1)^2} \right]$$

Energy spectrum

$$\frac{1}{\sigma_c} \frac{d\sigma_c}{dy} \equiv f(x,y)$$

$$= \frac{2\pi\alpha^2}{\sigma_c x m_e^2} \left[\frac{1}{1-y} + 1 - y - 4r(1-r) - \lambda_e P_c r x (2r-1)(2-y) \right]$$

$$r = \frac{y}{x(1-y)} \le 1$$

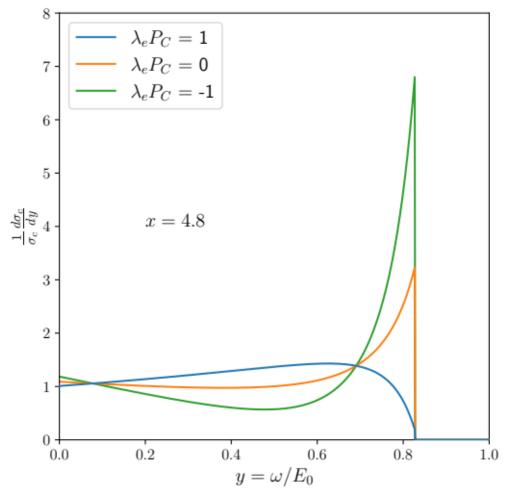
How to get the beams?

Ilya Ginzburg '83

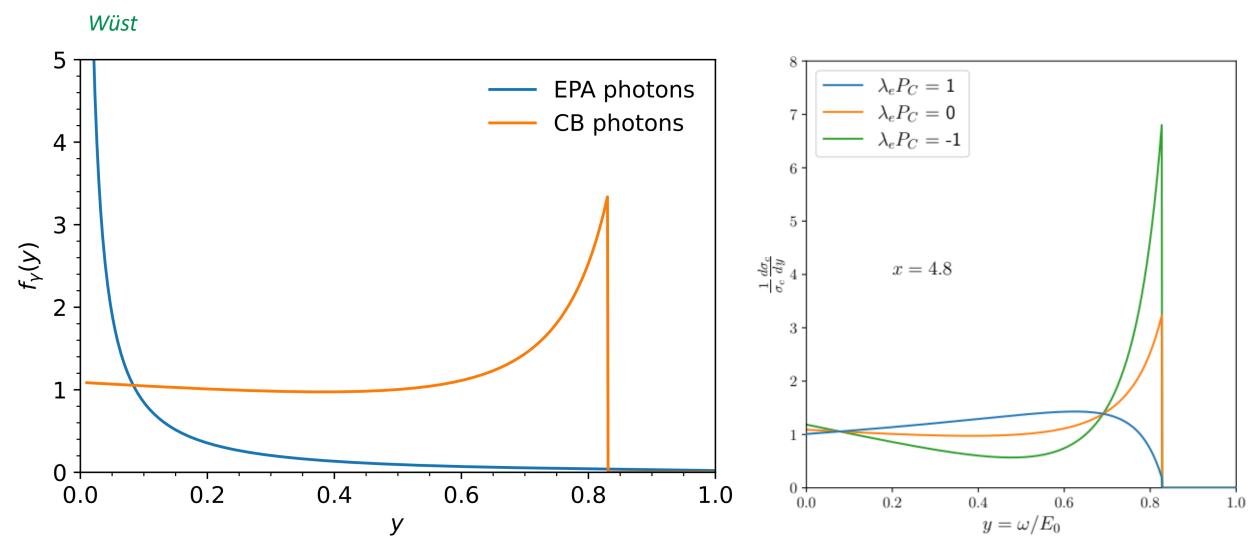
• Compton backscattering $\sigma_c = \sigma_c^{np} + \lambda_e P_c \sigma_c^1$

$$\sigma_c = \sigma_c^{np} + \lambda_e P_c \sigma_c^1$$

$$\sigma_c^{np} = \frac{2\pi\alpha^2}{xm_e^2} \left[\left(1 - \frac{4}{x} - \frac{8}{x^2} \right) \ln(x+1) + \frac{1}{2} + \frac{8}{x} - \frac{1}{2(x+1)^2} \right]$$


$$\sigma_c^1 = \frac{2\pi\alpha^2}{xm_e^2} \left[\left(1 + \frac{2}{x} \right) \ln x + 1 - \frac{5}{2} + \frac{1}{x+1} - \frac{1}{2(x+1)^2} \right]$$

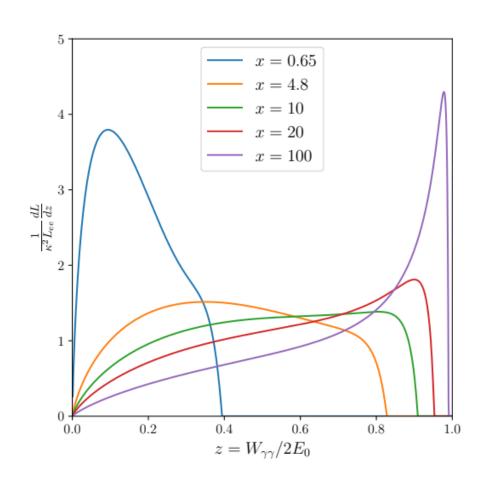
Energy spectrum


$$\frac{1}{\sigma_c} \frac{d\sigma_c}{dy} \equiv f(x, y)$$

$$= \frac{2\pi\alpha^2}{\sigma_c x m_e^2} \left[\frac{1}{1-y} + 1 - y - 4r(1-r) - \lambda_e P_c r x (2r-1)(2-y) \right]$$

$$r = \frac{y}{x(1-y)} \le 1$$

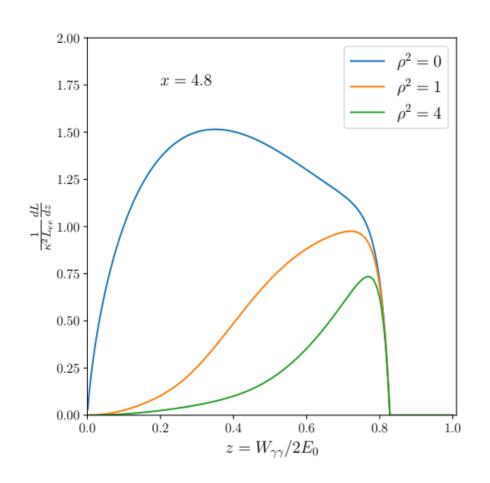
Compared to EPA photons


FH Particle Physics, April 2025

Berger et al.: Photon Collider

Spectral Luminosity

$$\frac{1}{k^2 L_{ee}} \frac{\mathrm{d}L_{\gamma\gamma}}{\mathrm{d}z} = 2z \int_{z^2/y_{max}}^{y_{max}} \frac{\mathrm{d}y}{y} f(x,y) f\left(x, \frac{z^2}{y}\right)$$
$$I_0\left(\rho^2 \sqrt{\left(\frac{y_{max}}{y} - 1\right) \left(\frac{y_{max}y}{z^2} - 1\right)}\right)$$
$$\exp\left[-\frac{\rho^2}{2} \left(\frac{y_{max}}{y} + \frac{y_{max}y}{z^2} - 2\right)\right]$$


$$\rho^2 = \left(\frac{b}{\gamma \sigma_x}\right)^2 + \left(\frac{b}{\gamma \sigma_y}\right)^2$$

Spectral Luminosity

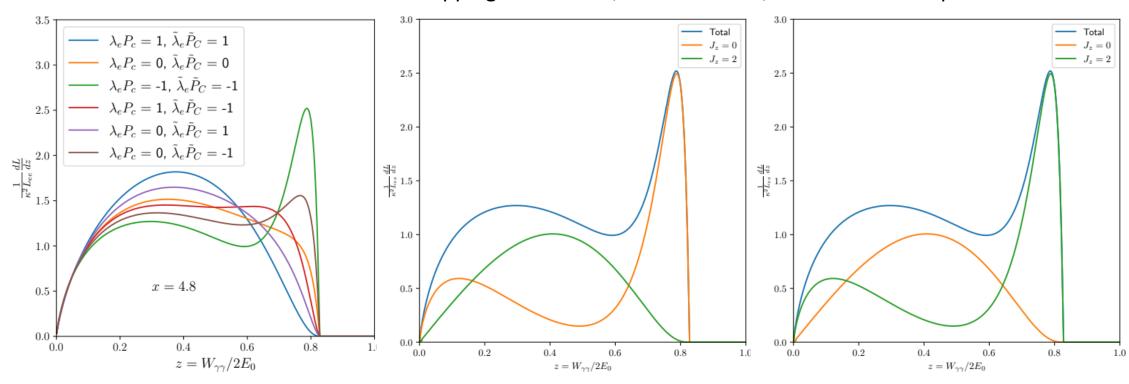
$$\frac{1}{k^2 L_{ee}} \frac{\mathrm{d}L_{\gamma\gamma}}{\mathrm{d}z} = 2z \int_{z^2/y_{max}}^{y_{max}} \frac{\mathrm{d}y}{y} f(x,y) f\left(x, \frac{z^2}{y}\right)$$
$$I_0 \left(\rho^2 \sqrt{\left(\frac{y_{max}}{y} - 1\right) \left(\frac{y_{max}y}{z^2} - 1\right)}\right)$$
$$\exp\left[-\frac{\rho^2}{2} \left(\frac{y_{max}}{y} + \frac{y_{max}y}{z^2} - 2\right)\right]$$

$$\rho^2 = \left(\frac{b}{\gamma \sigma_x}\right)^2 + \left(\frac{b}{\gamma \sigma_y}\right)^2$$

Polarization at photon collider

- Polarization effects
 - Mean helicity of the beams

$$\langle \lambda_{\gamma} \rangle = \frac{\lambda_e xr[1 + (1 - y)(2r - 1)^2] - P_c(2r - 1)[(1 - y)^{-1} + 1 - y]}{(1 - y)^{-1} + 1 - y - 4r(1 - r) - \lambda_e P_c xr(2 - y)(2r - 1)}$$


- Effect on the luminosity

$$\frac{1}{k^2 L_{ee}} \frac{\mathrm{d}L_{\gamma\gamma}^{+\pm}}{\mathrm{d}z} = 2z \int_{z^2/y_{max}}^{y_{max}} \frac{\mathrm{d}y}{y} \left(\frac{1 \pm \lambda_{\gamma,1} \lambda_{\gamma,2}}{2}\right) f(x,y) f\left(x, \frac{z^2}{y}\right)$$
$$F(\rho),$$

$$L_{\gamma\gamma} = L_{\gamma\gamma}^{++} + L_{\gamma\gamma}^{+-}$$

Polarization at photon collider

Flipping of the $J_z = 0$, 2 contribution, with same total spectrum

Include polarization in energy spectrum

Beam polarization included with

$$\lambda_e = 1$$
, $P_c = -1$, $\tilde{\lambda}_e = 1$, $\tilde{P}_c = -1$ $\lambda_e = 1$, $P_c = -1$, $\tilde{\lambda}_e = -1$, $\tilde{P}_c = 1$

Beam polarization included with

$$\lambda_e = 1, \quad P_c = -1, \quad \tilde{\lambda}_e = -1, \quad \tilde{P}_c = 1$$

Realistic spectrum

CAIN includes important effects

Yokoya et al.

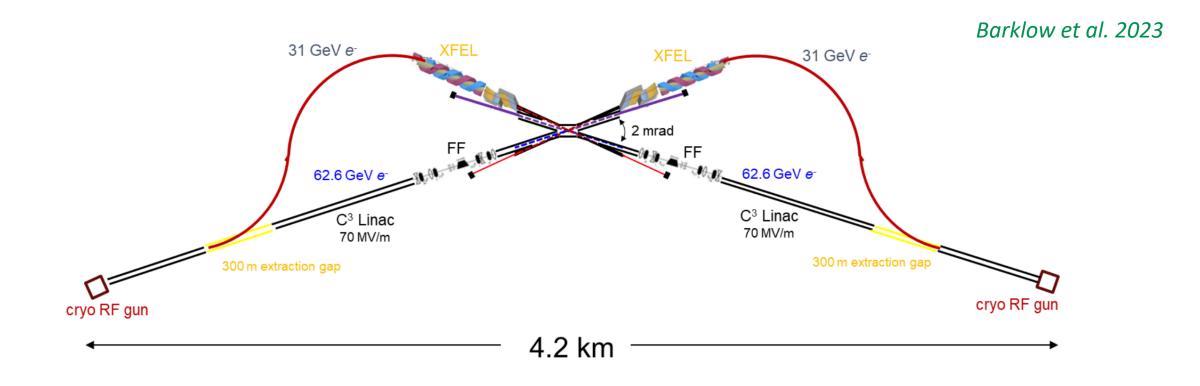
- Breit-Wheeler and Bethe-Heitler
- Needs fine-tuning of laser and electron beam parameters to optimize spectrum

Possible to use 2D-Spectrum

Kilian, Ohl, Reuter, et al.

- Used with other codes like WHIZARD
- Also gain information on boost

Designs


Optical

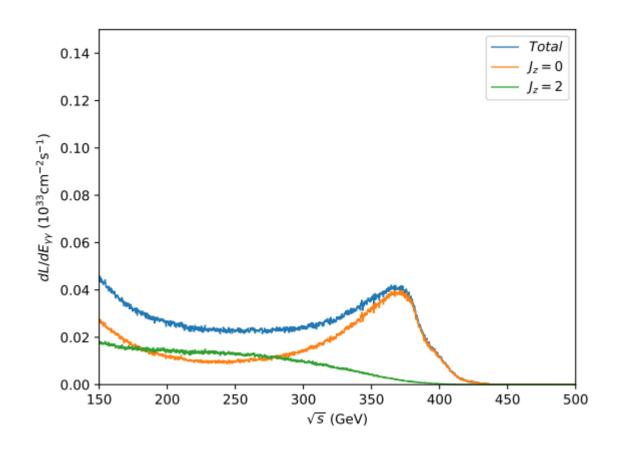
- Laser for x = 4.82
- Energy of up to ~80% E_e
- Broad spectrum
- 100% of electrons
- h-production at E_e = 108 GeV
- di-Higgs at E_e = 250 GeV
- $\lambda_e P_c = -0.9$

XCC

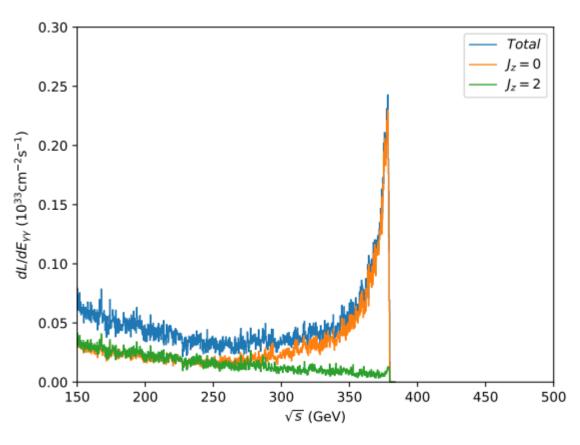
- XFEL for x = 1000
- Energy of close to 100% E_e
- Peaked spectrum
- 20% of electrons converted
- h-production at E_e = 62.8 GeV
- di-Higgs at E_e = 190 GeV
- $\lambda_e P_c = 0.9$

Design for XCC cms = 125 GeV

Parameters for cms = 380 GeV


LCVision, Balazs et al., arXiv 2503.19983

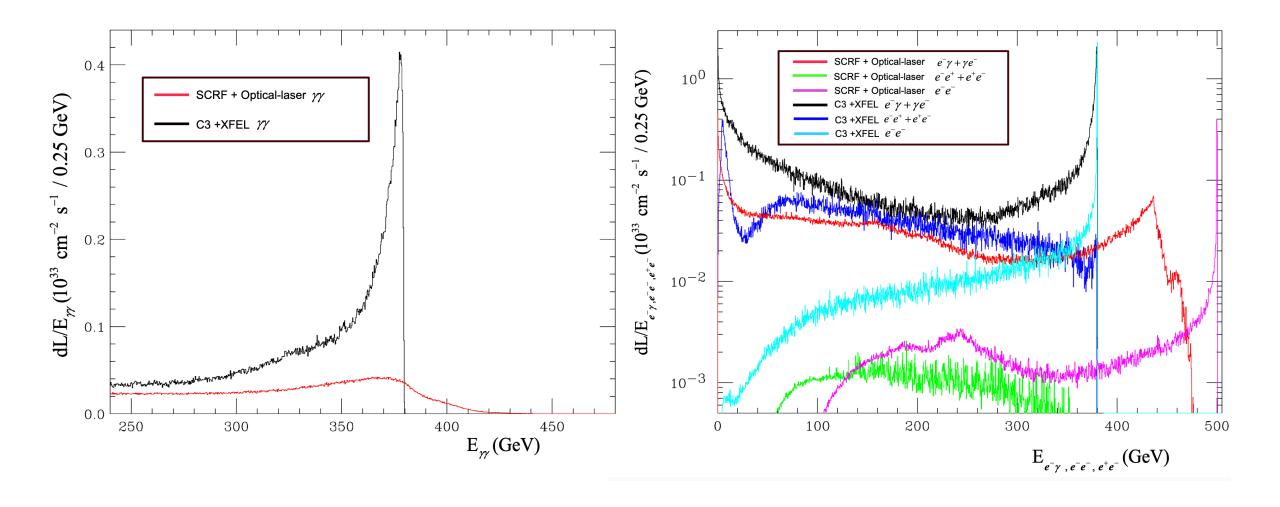
Final Focus parameters	SCRF + Optical Laser	C3 + XFEL
Electron energy [GeV]	250	190
Electron beam power [MW]	10.5	2.1
β_{x}/β_{y} [mm]	1.5/0.3	0.01/0.01
$\gamma \varepsilon_{_{X}}/\gamma \varepsilon_{_{V}}$ [nm]	2500/30	60/60
σ_x/σ_y at e^-e^- IP [nm]	88/4.3	1.3/1.3
$\sigma_z [\mu m]$	300	10
Bunch charge [10 ¹⁰ e ⁻]	2	0.62
Bunches/train at IP	2625	93
Train Rep. Rate at IP [Hz]	5	120
Bunch spacing at IP [ns]	366	5.2
σ_x/σ_y at IPC [nm]	176/37.5	5,2/5.2
$\mathcal{L}_{\text{geometric}} [10^{34} \text{cm}^2 \text{ s}^{-1}]$	12	180
δ_E/E [%]		0.1
L^* (QD0 exit to e^-e^- IP) [m]	3.8	1.5 or 3.0
d_{cp} (IPC to IP) [μ m]	2600	40
crossing angle [mrad]	20	2 or 20


Laser parameters	SCRF + Optical Laser	C3 + XFEL
Electron energy [GeV]	n.a.	31
Normalized emittance [nm]	n.a.	60
RMS energy spread $\langle \Delta \gamma / \gamma \rangle$ [%]	n.a.	0.05
Bunch charge [nC]	n.a.	1
Undulator B field [T]	n.a.	-
Undulator period λ_u [cm]	n.a.	-
Average β function [m]	n.a.	-
photon λ (energy) [nm (keV)]	1056 (0.0012)	2.5 (0.05)
photon pulse energy [J]	2.4	1.0
rms pulse length [μ m]	450	20
$a_{\gamma x}/a_{\gamma y}$ (x/y waist) [nm]	5000/5000	21/21
$a_{\gamma x}/a_{\gamma y}$ (x/y waist) [nm] non-linear QED ξ^2	0.21	1.1

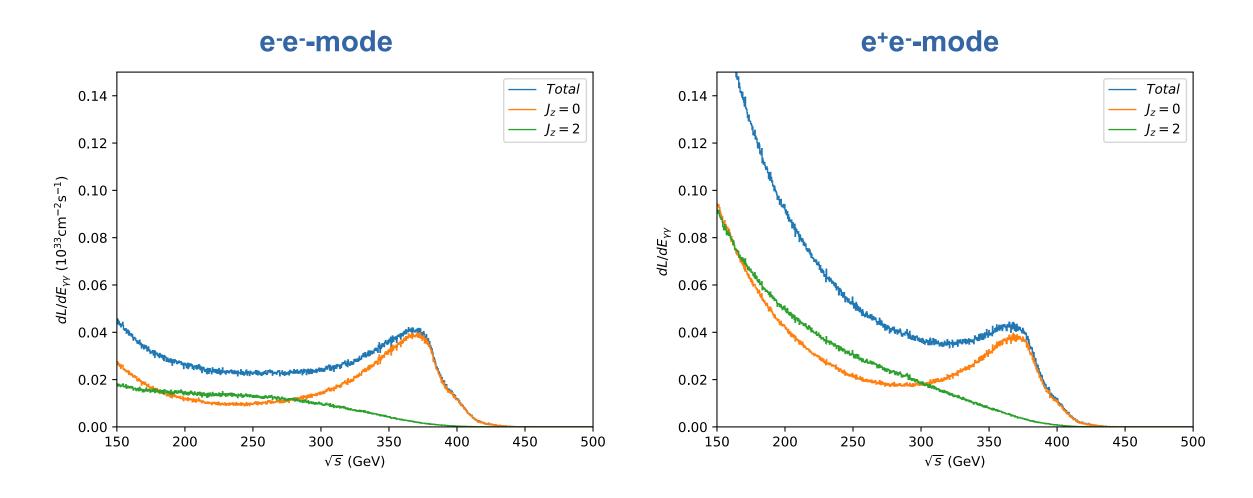
Optical and XCC

Optical laser with x = 4.82

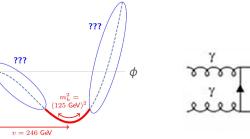
XCC with x = 1000

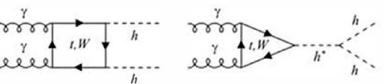


FH Particle Physics, April 2025

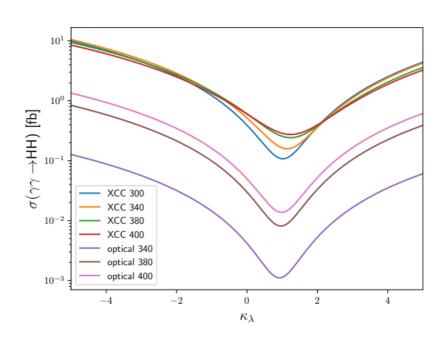

Berger et al.: Photon Collider

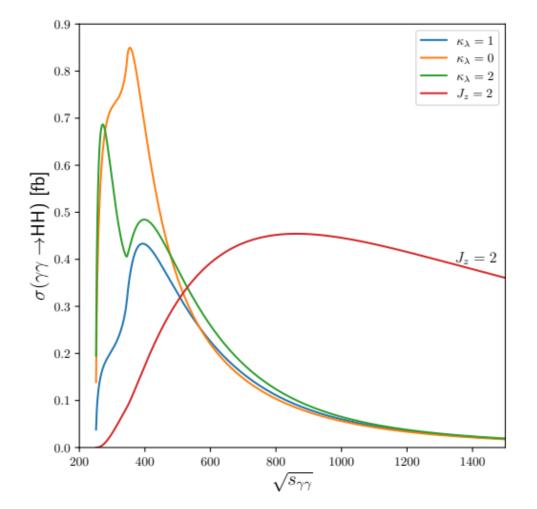
Additional processes in $\gamma\gamma$ mode

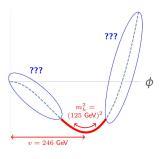

LCVision, Balazs et al., arXiv 2503.19983



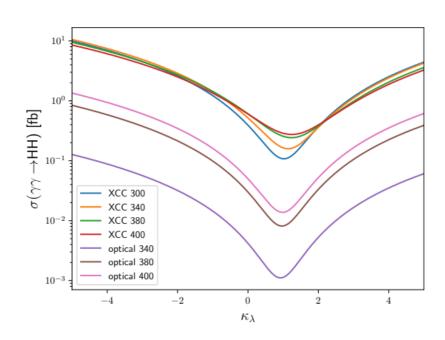
Comparison between e-e- and e+e-

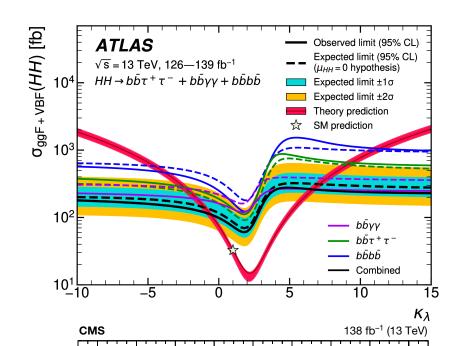


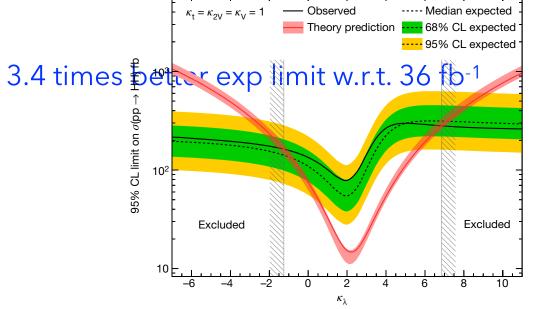



21

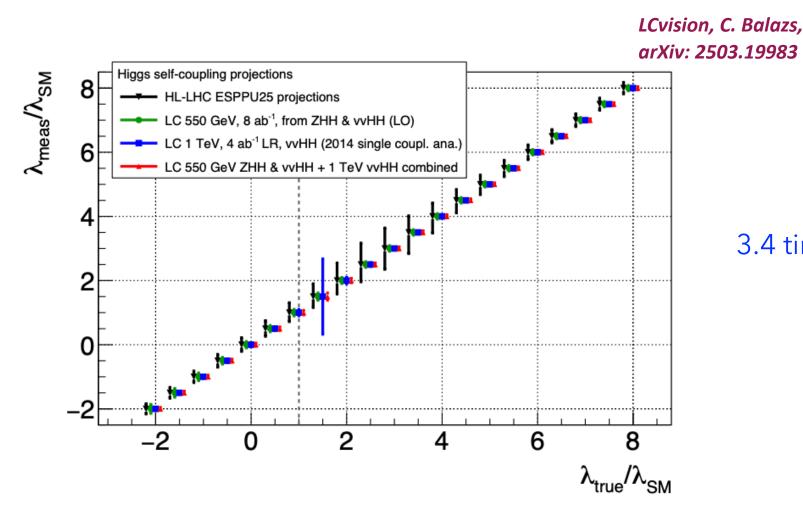
- Triangle contribution only for $J_z=0$
- Highly depending on trilinear Higgs-coupling

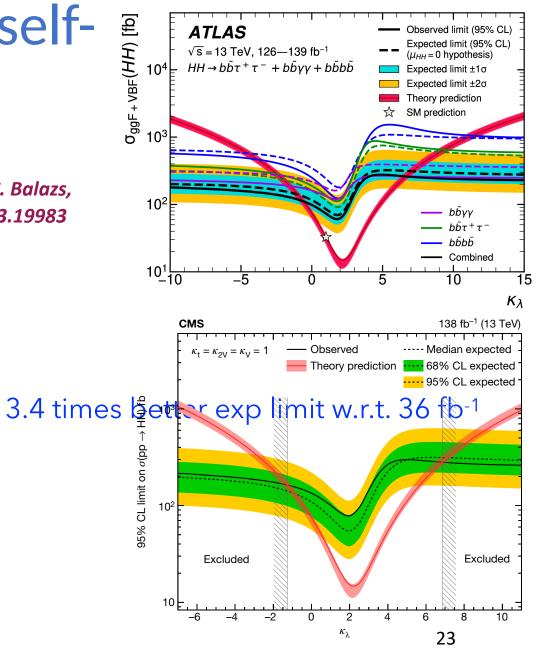


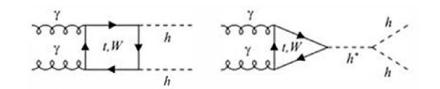


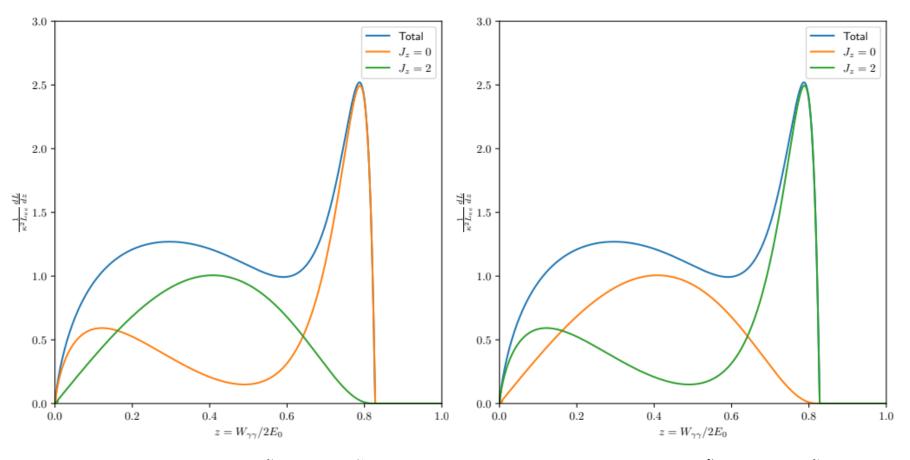


- Minimum around $\kappa_{\lambda} = 1$
- Compared to LHC minimum around κ_{λ} = 2

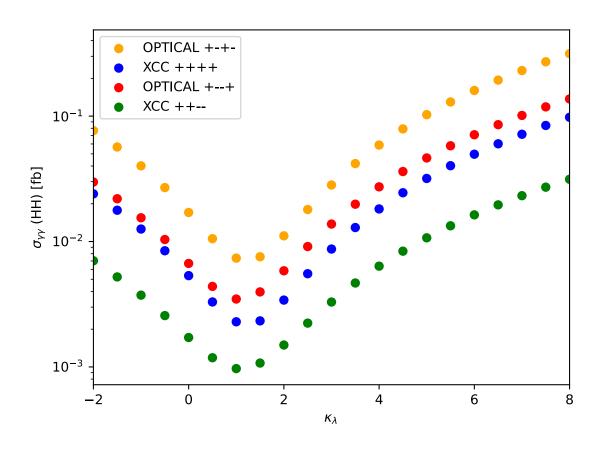


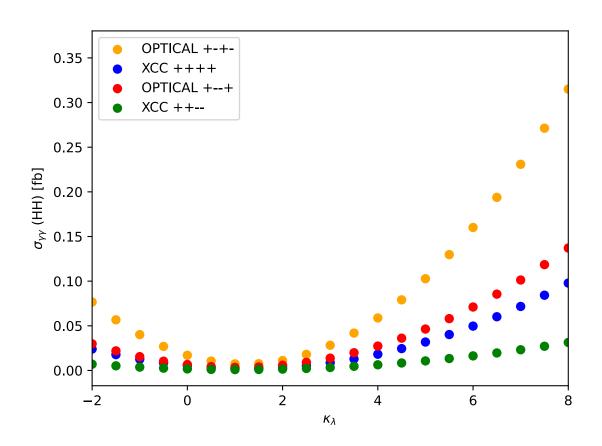





FH Particle Physics, April 2025 Berger et al.: Photon Collider

Bound on the trilinear Higgs self-coupling: κ_{λ}

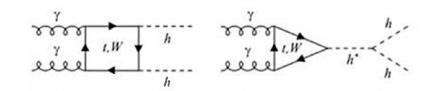


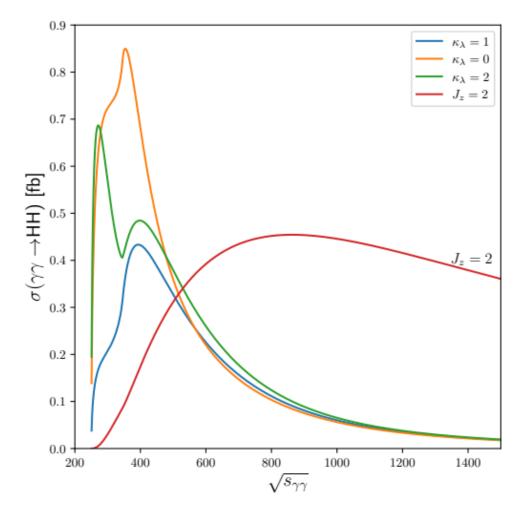

$$M_{++} = \text{Triangle} + \text{Box}(++)$$

$$M_{+-} = \mathsf{Box}(+-)$$

 $\lambda_e = 1, \quad P_c = -1, \quad \tilde{\lambda}_e = 1, \quad \tilde{P}_c = -1$ $\lambda_e = 1, \quad P_c = -1, \quad \tilde{\lambda}_e = -1, \quad \tilde{P}_c = 1$

Berger et al.: Photon Collider

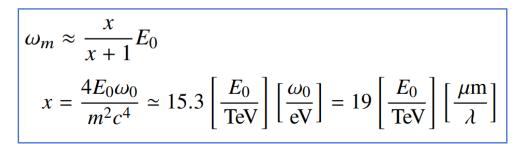

- CAIN spectrum
- Optical

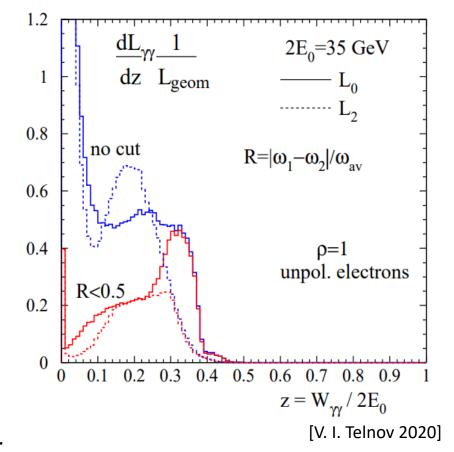

$$L_{\gamma\gamma} = 7.30735 * 10^{34} \text{cm}^{-2} \text{s}^{-1}$$

- 34 events per year
- XCC

$$L_{\gamma\gamma} = 3.96267 * 10^{35} \text{cm}^{-2} \text{s}^{-1}$$

- 58 events per year

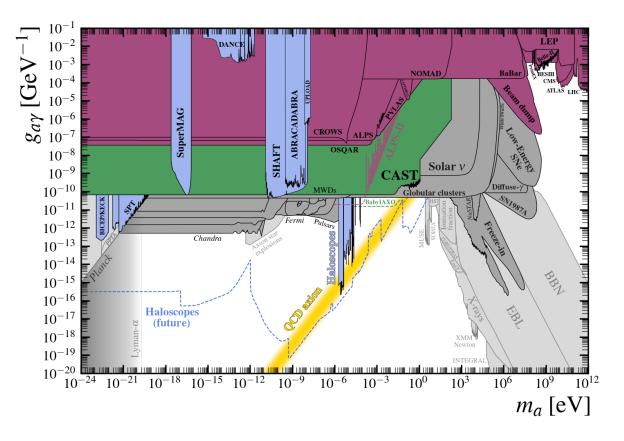




Photon collider at XFEL

- Use European XFEL (E_0 = 17.5 GeV)
- At the beam dump, splitting the beam
- 12 GeV peak
- Excellent for $b\bar{b}$ and $c\bar{c}$ range

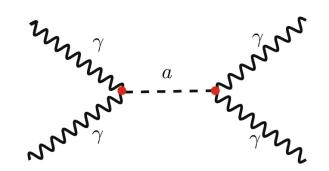
$2E_0$	GeV	35
N per bunch	10^{10}	0.62
Collision rate	kHz	13.5
σ_z	μ m	70
$\varepsilon_{x,n}/\varepsilon_{y,n}$	mm · mrad	1.4/1.4
β_x/β_y at IP	μ m	70/70
σ_x/σ_y at IP	nm	53/53
Laser wavelength λ	μ m	0.5
Parameters x and ξ^2		0.65, 0.05
Laser flash energy	J	3
Laser pulse duration	ps	2
$f# \equiv F/D$ of laser system		27
Crossing angle	mrad	~ 30
b (CP–IP distance)	mm	1.8
$\mathcal{L}_{ee, ext{geom}}$	$10^{33}\mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.45
$\mathcal{L}_{\gamma\gamma}(z>0.5z_m)$	$10^{33} \text{cm}^{-2} \text{s}^{-1}$	0.19
$W_{\gamma\gamma}$ (peak)	GeV	12

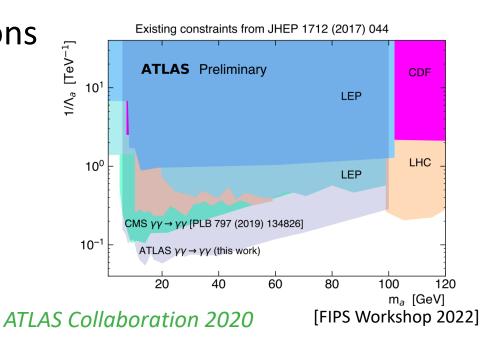


BSM Searches at photon colliders

- Additional hadronic resonances
- Possible four-quark states

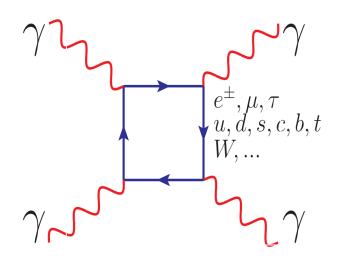
- Looking for BSM particles
 - ALPs
 - Mixed models
- Indirect tests of SM physics
 - Precision observables


Telnov 2020


[FIPS Workshop 2022]

Light-by-light scattering

- Has been done for a long time
- So far observed by ATLAS
 - recent results from 2020
- Possibility to observe BSM contributions



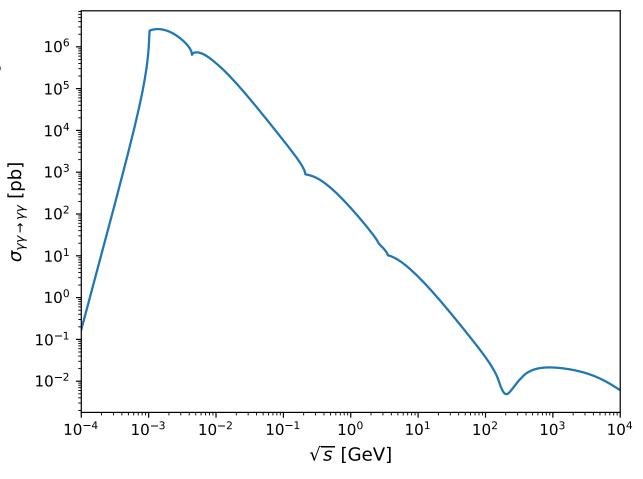
FH Particle Physics, April 2025 Berger et al.: Photon Collider 29

Light-by-light scattering

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \frac{1}{4\omega^2} |M_{fi}|^2$$

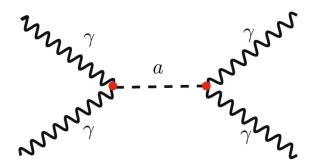
Helicity amplitudes

$$|M_{fi}|^2 \to \frac{1}{2} \{2|M_{++++}|^2 + 2|M_{++--}|^2 + 2|M_{+-+-}|^2 + 2|M_{+--+}|^2 + 8|M_{+++-}|^2\}$$

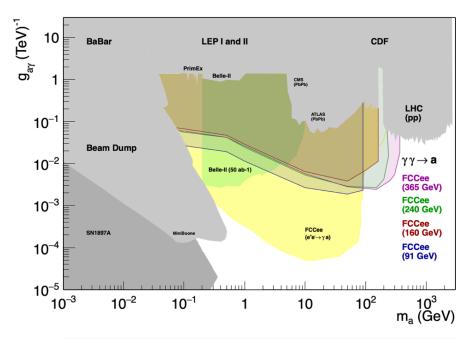

$$M_{++++}$$
, M_{++--} und M_{+++-}

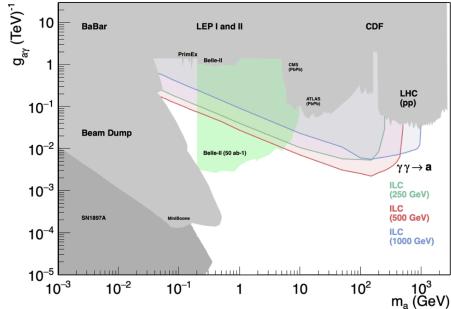
Light-by-light scattering

Only fermionic contributions


Electron contribution dominant

$$d\sigma = \int_0^{z_{max}} dz \int_{z^2/y_{max}}^{y_{max}} dy \frac{1}{L_{\gamma\gamma}} \frac{dL_{\gamma\gamma}}{dz} d\sigma_{\gamma\gamma \to \gamma\gamma}$$


Axion-Like Particles


$$\mathcal{L}_{ALPs} = \frac{1}{2} \partial^{\mu} a \partial_{\mu} a - \frac{1}{2} m_a^2 a^2 - \frac{g_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Main contribution from s-channel

$$\mathcal{M}_{ALPs} = -\frac{1}{2} \frac{g_{a\gamma\gamma}^2 s^2}{s - m_a^2 + i m_a \Gamma}$$

Teles et al. 2024

Axion-Like Particles

 $\frac{\gamma}{\gamma}$

• With helicity amplitudes

Baldenegro et al. 2018

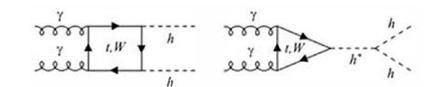
$$\frac{d\sigma}{d\Omega}^{\gamma\gamma\to\gamma\gamma} = \frac{1}{128\pi^2 s} (|\mathcal{M}_{++++}|^2 + |\mathcal{M}_{+-+-}|^2 + |\mathcal{M}_{+--+}|^2 + |\mathcal{M}_{+---}|^2)$$

$$|M_{fi}|^2 \to \frac{1}{2} \{ 2|M_{++++}|^2 + 2|M_{++--}|^2 + 2|M_{+-+-}|^2 + 2|M_{+--+}|^2 + 8|M_{+++-}|^2 \}$$

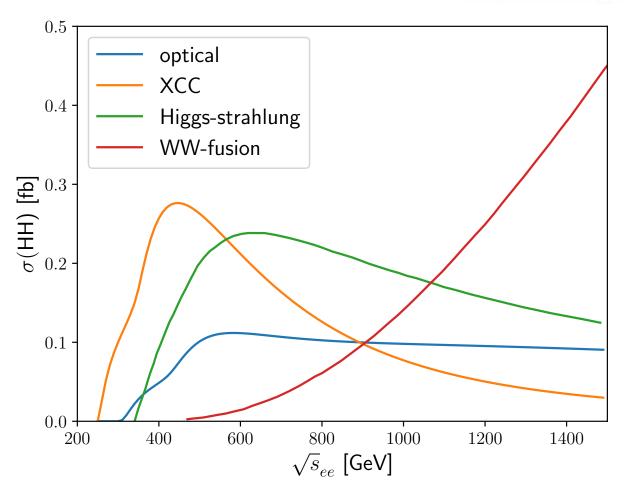
Final cross-section dependent on photon luminosity

$$\frac{d\sigma}{d\Omega} = \int \frac{d\mathcal{L}}{d\hat{s}}^{\gamma\gamma} \frac{d\hat{\sigma}}{d\Omega}^{\gamma\gamma \to \gamma\gamma} d\hat{s}$$

FH Particle Physics, April 2025 Berger et al.: Photon Collider


Conclusions

- Gamma-gamma colliders are great additions to e^+e^- colliders
 - e+ not needed, main concept with e-e-
- At European XFEL first look at the technology for future colliders
- $bar{b}$ and $car{c}$ production range is covered


Ongoing Work

- Determination of trilinear Higgs Couplings for (B)SM Higgs
- SM Light-by-Light vs different BSM contributions
- Full ALPs check with CAIN luminosity

FH Particle Physics, April 2025

36

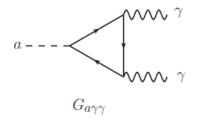
Costs for XCC

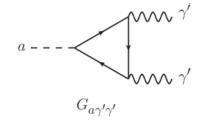
- For XCC 125 GeV
- Very early stage
- Using C³-250 cost model

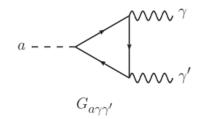
	Sub-Domain	%	%
Sources	Injectors	9	26
	FEL	9	
	Beam Transport	9	
Main Linac	Cryomodule	9	30
	C-band Klystron	22	
BDS	Beam Delivery and Final Focus	7	15
	IR	8	
Support Infrastructure	Civil Engineering	5	28
	Common Facilities	18	
	Cryo-plant	6	
Total	2.3B\$	100	100

"Dark Axion model"

[K. Kaneta, H. Lee, S. Yun `17]


- KSVZ-type axion [Kim, Shifman, Vainshtein, Zakharov]
 - (Very) heavy quark and (nearly) sterile axion
- With dark photon


$$\mathcal{L}_{\text{axion portal}} = \frac{G_{agg}}{4} a G_{\mu\nu} \tilde{G}^{\mu\nu} + \frac{G_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \cdots$$


38

$$\mathcal{L}_{\text{vector portal}} = \frac{\epsilon}{2} F_{\mu\nu} F^{\prime\mu\nu}$$

$$\mathcal{L}_{\text{dark axion portal}} = \frac{G_{a\gamma'\gamma'}}{4} a F'_{\mu\nu} \tilde{F}'^{\mu\nu} + \frac{G_{a\gamma\gamma'}}{4} a F_{\mu\nu} \tilde{F}'^{\mu\nu}$$

FH Particle Physics, April 2025 Berger et al.: Photon Collider