
Introduction to Python3
An introduction to Python part 1 – Beginner

Christoph Rosemann

DESY FS-SC

November 27, 2025
ChR Introduction to Python3

Front matter

What is this about?

central idea: gentle hands-on introduction

by choice very reduced amount of topics

education on your terms, please interact/ask

as much (inter-) activity as possible

structured into blocks

target for today: being able to read and write simple programs

target for tomorrow: have a good basic idea of Python

this is a work in progress, first iteration!

several continuations possible, evaluation of the approach

ChR Introduction to Python3

Outline for today

Topics

introduction

data types and data structures

statements and expressions

control flow

input/output

Style

please engage!

ChR Introduction to Python3

Next

Block::Introduction

too much talking, but necessary

use of colours:

blue: general text

green: things to type, to test or to do

red: important things to look out for

keywords (reserved words) are in different font

ChR Introduction to Python3

Python characteristics

Python is

a strongly typed language

a dynamically typed language

multi paradigm language

set in blocks that are identified by indentation

interpreted language (relying on byte code)

Lots of humour and quotes surrounding it

”Coding like Guido indented it”

”Walks like a duck, quacks like a duck – is a duck”

”Batteries included”

Python?

it’s named after Monty Python

ChR Introduction to Python3

Python Interactive

scripts? program? code!

There are several ways to write and execute Python code or
programs.

interactive prompt

editor and command line

integrated development environment IDE

Most simple view: a Python program is just a file containing
Python statements.

Python Interactive

for now: interactive prompt
indicated by >>>

note: it prints the results of every expression!

ChR Introduction to Python3

Tradition first: the first program

Python Interactive

>>> print("Hello world!")

Write program file

start editor

enter
print("Hello world!")

save file as ’hello.py’

execute as python3 hello.py

Built in command print()

takes an argument (since it is actually a function, see later)

ChR Introduction to Python3

Help and references

The best source:

https://docs.python.org/

Books:

Mark Lutz Learning Python, ed. 6 recently published

Mark Lutz Programming Python, ed. 4

Python Interactive:

>>> help(object)

>>> dir(object)

Python is interactive!

ChR Introduction to Python3

https://docs.python.org/

Fundamentals

Central point about programming

Programs are meant to be read by humans and only incidentally
for computers to execute.

(Abelson & Sussman, ”Structure and Interpretation of Computer Programs”)

Python Interactive: Folklore

>>> import this

ChR Introduction to Python3

A preview of terms
We will return later to these

A hierarchy of names

1 programs can be/are composed of modules

2 modules contain statements

3 statements contain expressions

4 expressions create and process ”objects”

Things for the back of your mind

in Python, everything is an object

programs and modules are just text files

in Python, (almost) everything is a reference

ChR Introduction to Python3

Next

Block::data types and data structures

What are the ”things” we are doing ”stuff” with?

Topics

data types in Python

basic data types: numbers, strings, and booleans

built-in data structures: lists, dictionaries, tuples (and more)

from simple data types to categories (ie. sequences and
mappings)

ChR Introduction to Python3

What is a data type?

Definition

A data type defines what kind of value a variable can hold and
what operations can be performed on it.

Examples using the assignment operator =

>>> x = 42 (integer)
>>> y = 3.14 (floating-point)
>>> name = "John Cleese" (string)

From now on: drop the >>> in front of the line

ChR Introduction to Python3

Built-in objects

A non exhaustive overview

Numbers 1234 , 3.1415 , 3+4j , Decimal , Fraction
Strings ’spam’ , ”eggs”
Lists [1, [2, ’three’], 4]

Dictionaries ’food’: ’spam’, ’taste’: ’yum’
Tuples (1, ’spam’, 4, ’U’)
Files myfile = open(’eggs’, ’r’)
Sets set(’abc’), ’a’, ’b’, ’c’

Other Booleans, types, None
Program unit types Functions, modules, classes

Incomplete view in more than one way

Central concepts will become apparent later:
Categories, Immutability, Mutability, ... go step by step

ChR Introduction to Python3

Numbers

The most simple/straightforward type

int — whole numbers

float — decimal numbers

complex — numbers with real and imaginary parts

Another function: type()

built-in function (→ later)

typically not used in Python code

here used for illustration

can be helpful in figuring out unexpected behaviour

ChR Introduction to Python3

Numbers interactively

Try in Interpreter

a = 7

b = 2.5

print(a + b)

print(type(a), type(b))

print(type(a+b))

k = 2+4j

print(type(k))

pow(a, 2)

a ** 2

abs(k)

comment: more functions, for now they

are objects with a reserved name

take one or multiple arguments given in brackets

ChR Introduction to Python3

Numbers

Still a non exhaustive overview

1234, -24, 0, 9999999999 Integers (unlimited size)
1.23, 3.14e-10 , 4E210 , 4.0e+210 Floating-point numbers

0o177 , 0x9ff , b’101010’ Octal, hex, and binary literals
3+4j , 3.0+4.0j , 3J Complex number literals

True, False Booleans

Each type has a clear identifier

no dot, dot, leading prefix, special character

There are extensions to this

example: fractions (rational numbers), vectors, matrices, ...

ChR Introduction to Python3

Strings

Strings in a nutshell

single or double quotes enclosure

multi-line with triple quotes enclosure

ordered sequence of characters

immutable (cannot be changed in place)

Strings are a massive topic on their own

regular expressions

handling input

all kinds of supports

special importance, since users like formatted text

we skip most of that for now!

ChR Introduction to Python3

Strings interactively

Examples

s = "abcdefghijkl"

t = ’strings are a big topic’

u = ’’’one could possibly say that

none of the many many

possibilities are

boring?’’’

print(s[0], s[-1])

print(u)

print(len(s))

print(s.upper())

Why are there different ways to construct?

ChR Introduction to Python3

Booleans and None

more special basic types

bool represents truth values: True, False.

Often the result of comparisons.

None is a special type representing “no value”.

Example

temperature = 25

print(temperature > 20)

result = None

print(type(result))

Conclusion

These are the basic types: int, float, str, bool, None

ChR Introduction to Python3

Why Data Structures?

The power of structure

real data is often a collections of values

data structures group related data and let us process it
efficiently

Python provides several built-in structures

these are at the core of what makes Python both user friendly
and extremely powerful

Do I need to care about types? Sometimes YES!

most of the time you’ll be using variables without every
thinking about their type(s)

even more times you’ll be using data structures to solve
specific tasks

Let’s have a closer look

ChR Introduction to Python3

Lists: Ordered and Mutable

Lists – the ultimate super power of Python

ordered sequence of values

constructed with square brackets, elements are comma
separated

empty list constructed by empty square brackets

can hold any (!) data type and structure

can be accessed by position or by an iterator

mutable: can be changed in place

central idea: lists are sequences that can grow or shrink

list is a reserved word

There is a twist to lists!

Less dramatic: one has to be aware of a property in using them

ChR Introduction to Python3

Lists interactively

Examples

data = [2, 4, 6, 8]

print(len(data))

data.append(10)

print(data)

data[3] = 10

print(data)

beta = data

delta = data.copy()

print(beta)

beta[0] = "hello"

print(delta)

print(data)

ChR Introduction to Python3

Lists caveat

create duplicates of lists by using the copy() function

Be aware when ”copying” lists

possibly a longer excursion, simplified take away:
new assignment of a list to another variable is the identical
list!

unfortunately this behaviour seems different in other cases

ChR Introduction to Python3

Tuples: Ordered and Immutable

Tuples

constructed with round brackets, elements are comma
separated

empty tuple constructed by empty round brackets

can hold any (!) data type and structure

can be accessed by position or by an iterator

useful for fixed collections of data (e.g., coordinates,
parameters)

Example

point = (3, 4)

print(point[0])

point[0] = 5 # This would raise an error

ChR Introduction to Python3

Dictionaries: key–value pairs

Dictionaries

constructed with curly brackets, each entry being
a pair of key and value separated by a double colon,
multiple elements are comma separated

empty dictionary constructed by empty curly brackets

always one key that is associated with a value

is an associative container: get values by key, not (!) position

keys must be immutable, other than that any type or
structure is allowed

can hold almost any (!) data type and structure as value

different iterators or sub collections exist:
items(), keys(), values()

Dicts share the list property

... and the solution

ChR Introduction to Python3

Dictionaries interactively

Examples

d = {}

type(d)

measurements = {"day1": 23.1, "day2": 22.8}

print(measurements["day1"])

measurements["day3"] = 24.0

ChR Introduction to Python3

Sets: Unique Unordered Elements

Sets

constructed with curly brackets, elements are comma
separated

each element is unique (!), duplicates get eliminated

cannot construct an empty set

typical use: membership tests and eliminating duplicates.

Example

samples = {"A", "B", "C", "A"}

print(samples)

print("A" in samples)

ChR Introduction to Python3

Type categories – and the Pythonic perspective

Pythonic perspective

Python uses types, but the experience is different

types and structures are defined by the operations they
support

some operation might seem ”intuitive”, ie. multiplication or
summation

Categories

numbers: int, float, fraction, ...

sequences: strings, lists, tuples

ordered (!) collections of variables
can be accessed by position

mappings: dictionaries – key-value pairs

ChR Introduction to Python3

Changeability

To change or not to change?

Orthogonal property to which category a type belongs to

deliberate design choice

possible variation within the same category (eg. list/tuple)

Immutables

numbers, strings, tuples, frozen sets

no change possible

must be set at creation time

Mutables

lists, dictionaries, sets, byte array

very powerful feature: change in place

potentially very dangerous feature!

ChR Introduction to Python3

Block summary

types, structures and categories

Python has simple data types: numbers, strings, booleans

built-in data structures: lists, tuples, dictionaries, sets

data types form categories: sequences, mappings, sets

ChR Introduction to Python3

Next

Block::building blocks – statements and expressions

Repeated from before:

programs are composed of modules

modules contain statements

statements contain expressions

expressions create and process objects

Topics

introduce the building blocks of a Python program

distinguish between expressions and statements

start to combine data and operations into meaningful
programs

ChR Introduction to Python3

What is a Program?

Definition

A program is a sequence of instructions that the computer
executes to perform a task.

In Python

each instruction is written as a statement

statements often contain one or more expressions

Example

area = width * height

statement: assignment to area.

expression: width * height.

ChR Introduction to Python3

Expressions

What is an expression in Python?

an expression is something that produces a value

the interpreter can evaluate it

try in interpreter

2 + 3

"Hello" + " " + "World"

len([1, 2, 3])

3.14 * (2 ** 2)

update on the previous comment:
expressions display their result in an interactive session

ChR Introduction to Python3

Statements

In Python

a statement performs an action

examples:

assign a value to a variable
print output
import a module (see later)
create a loop or conditional (see next block)

Examples

x = 5 # assignment statement

print(x) # function call statement

import math # import statement

ChR Introduction to Python3

Expressions vs. Statements

Python summary

Expression Statement

Produces a value? Yes Not necessarily
Can stand alone? Sometimes Always
Examples 2 + 3, "A" * 3 x = 5, print(x)

Takeaway

be aware what a code snippet does, ie. return something

how that is called is less important

interpreter behavior

once again, in an interactive session:

expressions return a value

statements do something but don’t return a value

ChR Introduction to Python3

Combining Statements and Expressions

Example Program

radius = 3.0

area = 3.1416 * (radius ** 2)

print("Area of circle:", area)

in this example:

each line is a statement

3.1416 * (radius ** 2) is an expression

together, they form a small but complete program

ChR Introduction to Python3

Interactive Practice

try

in the Python interpreter:

1 compute the kinetic energy of an object:
E = 0.5 * m * v ** 2

2 assign variables m and v and print the result

3 add a new statement that doubles the velocity and recomputes

discussion:

What changes if we enter only the expression 0.5 * m * v ** 2

versus the full assignment?

ChR Introduction to Python3

Next

Block::control flow

What makes a program a program?

topics

understand how Python decides what to execute next

learn to use if, elif, and else

use loops (for, while) to repeat actions

combine control flow with expressions and statements to build
small programs

ChR Introduction to Python3

Programs Need Choices and Repetition

How to write a program

until now, statements executed only sequentially

real programs:

make decisions (e.g., is a measurement valid?)
perform actions repeatedly (e.g. analyze all samples, values,
events)

Control Flow means deciding and repeating

ChR Introduction to Python3

if Statements

General Form

if condition:

block of code

elif another_condition:

optional block

else:

optional fallback

Indentation

first case we see that: defines the block structure in Python

visual clue in code what parts belong together

in interpreter: done automatically

in a file: customary to use 4 spaces

attention: don’t mix tabs and spaces, always use the same
indentation!

ChR Introduction to Python3

Example: Temperature Check

Try in Interpreter

temperature = 37.5

if temperature > 37:

print("High temperature")

elif temperature < 35:

print("Low temperature")

else:

print("Normal range")

Discussion:

what happens if temperature = 35.0?

ChR Introduction to Python3

Comparison and Logical Operators

Operators: character combinations with special meaning

Comparison: ==, !=, <, >, <=, >=

Logical: and, or, not

Example

if (temp > 20) and (humidity < 80):

print("Comfortable conditions")

very common mistake

don’t confuse assignment = with comparison ==

if temp = 20:

versus

if temp == 20:

ChR Introduction to Python3

for Loops: Iterate Over a Sequence

Example

samples = ["A", "B", "C"]

for s in samples:

print("Analyzing sample", s)

Idea: The loop variable s takes each value in the sequence.

Extra knowledge: iterator

This is another high level concept at work in Python: the iterator.
It’s an object, which visits every entry of a data structure when
used in loop.

ChR Introduction to Python3

for loops with iterators

Examples

data = [2, 4, 6, 8]

for value in data:

print(value ** 2)

for k in measurements.keys():

print(k)

for k, v in measurements.items():

print(" the key is:", k, "and the value is", v)

ChR Introduction to Python3

range() for Numerical Loops

Example

for i in range(5):

print("Measurement", i)

range(): a special kind of function

range(n) generates numbers from 0 to n-1

useful for repeating a fixed number of times

try: what is the type of range(n)?

makes sense only in a loop context

ChR Introduction to Python3

while Loops: Repeat Until Condition Fails

Example

energy = 10

while energy > 0:

print("Energy:", energy)

energy -= 3

eternal loops

Be careful! Loops must eventually make the condition false, or
they run forever.
This might be wanted, but how does one get out?

ChR Introduction to Python3

Loop Control: break and continue

Two more keywords to control loop behaviour

break — exit the loop early.

continue — skip to next iteration.

Example

for value in [3, -1, 5, 0, 2]:

if value < 0:

continue

if value == 0:

break

print("Positive:", value)

ChR Introduction to Python3

Interactive Practice

Try in the interpreter:

1 Write an if statement that classifies a number as positive,
negative, or zero.

2 Create a for loop that prints the square of numbers 1–5.

3 Modify it to skip even numbers using continue.

Question: When would you prefer a while loop over a for loop?

ChR Introduction to Python3

Block Summary

control flow

if/elif/else choose what code to run

for and while loops repeat code

control flow connects statements into logical programs

ChR Introduction to Python3

