Introduction to Python3
An introduction to Python part 1 — Beginner

Christoph Rosemann
DESY FS-SC

November 27, 2025

ChR Introduction to Python3

Front matter

What is this about?

@ central idea: gentle hands-on introduction

by choice very reduced amount of topics

education on your terms, please interact/ask

as much (inter-) activity as possible

structured into blocks

target for today: being able to read and write simple programs
target for tomorrow: have a good basic idea of Python

this is a work in progress, first iteration!

several continuations possible, evaluation of the approach

ChR Introduction to Python3

Outline for today

introduction

data types and data structures

o
o
@ statements and expressions
@ control flow

o

input/output

please engage!

A

ChR Introduction to Python3

Next

Block::Introduction

too much talking, but necessary

use of colours:

blue: general text

green: things to type, to test or to do

red: important things to look out for

keywords (reserved words) are in different font

ChR Introduction to Python3

Python characteristics

a strongly typed language

a dynamically typed language

°
°

@ multi paradigm language

@ set in blocks that are identified by indentation
°

interpreted language (relying on byte code)

Lots of humour and quotes surrounding it
@ "Coding like Guido indented it"
@ "Walks like a duck, quacks like a duck — is a duck”

@ "Batteries included”)

it's named after Monty Python

ChR Introduction to Python3

Python Interactive

scripts? program? code!

There are several ways to write and execute Python code or
programs.

@ interactive prompt
@ editor and command line
@ integrated development environment IDE

Most simple view: a Python program is just a file containing
Python statements.

Python Interactive

for now: interactive prompt
indicated by >>>
note: it prints the results of every expression!

ChR Introduction to Python3

Tradition first: the first program

Python Interactive
>>> print("Hello world!")

Write program file

@ start editor

@ enter
print ("Hello world!'")

@ save file as 'hello.py’

@ execute as python3 hello.py

€

Built in command print()

takes an argument (since it is actually a function, see later)

ChR Introduction to Python3

Help and references

The best source:

@ https://docs.python.org/

Books:
@ Mark Lutz Learning Python, ed. 6 recently published

e Mark Lutz Programming Python, ed. 4

A

Python Interactive:
@ >>> help(object)
e >>> dir(object)

€

Python is interactive!

ChR Introduction to Python3

https://docs.python.org/

Fundamentals

Central point about programming

Programs are meant to be read by humans and only incidentally
for computers to execute.

(Abelson & Sussman, " Structure and Interpretation of Computer Programs”)

Python Interactive: Folklore

>>> import this

ChR Introduction to Python3

A preview of terms

We will return later to these

A hierarchy of names

@ programs can be/are composed of modules
© modules contain statements

© statements contain expressions

© expressions create and process "objects”

Things for the back of your mind

@ in Python, everything is an object
@ programs and modules are just text files

@ in Python, (almost) everything is a reference

ChR Introduction to Python3

Next

Block::data types and data structures

What are the "things" we are doing " stuff’ with?

@ data types in Python

@ basic data types: numbers, strings, and booleans
@ built-in data structures: lists, dictionaries, tuples (and more)

e from simple data types to categories (ie. sequences and
mappings)

ChR Introduction to Python3

What is a data type?

Definition
A data type defines what kind of value a variable can hold and
what operations can be performed on it.

.

Examples using the assignment operator =

>>> x = 42 (integer)
>>>y = 3.14 (floating-point)
>>> name = "John Cleese" (string)

V.

From now on: drop the >>> in front of the line

ChR Introduction to Python3

Built-in objects

A non exhaustive overview

Numbers | 1234 , 3.1415 , 3+4j , Decimal , Fraction

Strings | 'spam’ , "eggs"

Lists | [1, [2, 'three'], 4]
Dictionaries | 'food’: 'spam’, 'taste’: 'yum’

Tuples | (1, 'spam’, 4, 'U")
Files | myfile = open('eggs’, 'r")
Sets | set('abc’), 'a’, 'b’, 'c’

Other | Booleans, types, None

Program unit types | Functions, modules, classes

Incomplete view in more than one way

Central concepts will become apparent later:
Categories, Immutability, Mutability, ... go step by step

ChR Introduction to Python3

Numbers

The most simple/straightforward type

@ int — whole numbers
o float — decimal numbers

@ complex — numbers with real and imaginary parts

Another function: type()

@ built-in function (— later)
@ typically not used in Python code
@ here used for illustration

@ can be helpful in figuring out unexpected behaviour

ChR Introduction to Python3

Numbers interactively

Try in Interpreter

a=17

b =2.5

print(a + b)
print(type(a), type(b))
print (type(a+b))

k = 2+4]

print (type(k))

pow(a, 2)

a **x 2

abs (k)

comment: more functions, for now they

@ are objects with a reserved name

@ take one or multiple arguments given in brackets

ChR Introduction to Python3

Numbers

Still a non exhaustive overview

1234, -24, 0, 9999999999 | Integers (unlimited size)
1.23, 3.14e-10 , 4E210 , 4.0e+210 | Floating-point numbers
00177 , 0x9ff , b'101010" | Octal, hex, and binary literals
3-+4j, 3.0+4.0j , 3J | Complex number literals
True, False | Booleans

Each type has a clear identifier

no dot, dot, leading prefix, special character

There are extensions to this

example: fractions (rational numbers), vectors, matrices, ...

ChR Introduction to Python3

Strings

Strings in a nutshell

@ single or double quotes enclosure
@ multi-line with triple quotes enclosure
@ ordered sequence of characters

@ immutable (cannot be changed in place)

Strings are a massive topic on their own

@ regular expressions

¢

@ handling input
@ all kinds of supports

@ special importance, since users like formatted text

@ we skip most of that for now!

ChR Introduction to Python3

Strings interactively

s = "abcdefghijkl"

t = ’strings are a big topic’

u = ’’’one could possibly say that
none of the many many
possibilities are
boring?’’’

print(s[0], s[-11)

print (u)

print (len(s))

print(s.upper())

v

Why are there different ways to construct?

ChR Introduction to Python3

Booleans and None

more special basic types

@ bool represents truth values: True, False.

o Often the result of comparisons.

@ None is a special type representing “no value”.

temperature = 25

print (temperature > 20)
result = None
print (type (result))

A

These are the basic types: int, float, str, bool, None

ChR Introduction to Python3

Why Data Structures?

The power of structure

@ real data is often a collections of values

@ data structures group related data and let us process it
efficiently

@ Python provides several built-in structures

@ these are at the core of what makes Python both user friendly
and extremely powerful

Do | need to care about types? Sometimes YES!

@ most of the time you'll be using variables without every
thinking about their type(s)

@ even more times you'll be using data structures to solve
specific tasks

Let's have a closer look

ChR Introduction to Python3

Lists: Ordered and Mutable

Lists — the ultimate super power of Python

@ ordered sequence of values

@ constructed with square brackets, elements are comma
separated

empty list constructed by empty square brackets
can hold any (!) data type and structure

can be accessed by position or by an iterator
mutable: can be changed in place

central idea: lists are sequences that can grow or shrink

list is a reserved word)

There is a twist to lists!
Less dramatic: one has to be aware of a property in using them

ChR Introduction to Python3

Lists interactively

data = [2, 4, 6, 8]
print(len(data))
data.append(10)
print(data)

datal[3] = 10
print(data)

beta = data

delta = data.copy()
print (beta)

beta[0] = "hello"
print(delta)
print(data)

ChR Introduction to Python3

Lists caveat

create duplicates of lists by using the copy () function

Be aware when " copying” lists

@ possibly a longer excursion, simplified take away:
new assignment of a list to another variable is the identical
list!

@ unfortunately this behaviour seems different in other cases

ChR Introduction to Python3

Tuples: Ordered and Immutable

@ constructed with round brackets, elements are comma
separated

empty tuple constructed by empty round brackets
can hold any (!) data type and structure

can be accessed by position or by an iterator

useful for fixed collections of data (e.g., coordinates,
parameters)

point = (3, 4)
print (point [0])
point[0] = 5 # This would raise an error

ChR Introduction to Python3

Dictionaries: key—value pairs

Dictionaries

constructed with curly brackets, each entry being
a pair of key and value separated by a double colon,
multiple elements are comma separated

empty dictionary constructed by empty curly brackets
always one key that is associated with a value
is an associative container: get values by key, not (!) position

keys must be immutable, other than that any type or
structure is allowed

can hold almost any (!) data type and structure as value

different iterators or sub collections exist:
items (), keys (), values()

v

Dicts share the list property
... and the solution

ChR Introduction to Python3

Dictionaries interactively

d ={}

type(d)

measurements = {"dayl": 23.1, "day2": 22.8}
print (measurements["day1"])
measurements["day3"] = 24.0

ChR Introduction to Python3

Sets: Unique Unordered Elements

@ constructed with curly brackets, elements are comma
separated

@ each element is unique (!), duplicates get eliminated

@ cannot construct an empty set

@ typical use: membership tests and eliminating duplicates.

Salnples = {||Al|’ "B“, IIC"’ ||All}
print (samples)
print("A" in samples)

ChR Introduction to Python3

Type categories — and the Pythonic perspective

Pythonic perspective
@ Python uses types, but the experience is different
@ types and structures are defined by the operations they
support
@ some operation might seem "intuitive”, ie. multiplication or
summation

A

Categories
@ numbers: int, float, fraction, ...
@ sequences: strings, lists, tuples

o ordered (!) collections of variables
@ can be accessed by position

@ mappings: dictionaries — key-value pairs

.

ChR Introduction to Python3

Changeability

To change or not to change?

Orthogonal property to which category a type belongs to
o deliberate design choice

@ possible variation within the same category (eg. list/tuple)
V.

numbers, strings, tuples, frozen sets

@ no change possible

@ must be set at creation time

.

lists, dictionaries, sets, byte array
@ very powerful feature: change in place

@ potentially very dangerous feature!

.

ChR Introduction to Python3

Block summary

types, structures and categories

@ Python has simple data types: numbers, strings, booleans
@ built-in data structures: lists, tuples, dictionaries, sets

@ data types form categories: sequences, mappings, sets

ChR Introduction to Python3

Next

Block::building blocks — statements and expressions

Repeated from before:
@ programs are composed of modules
@ modules contain statements
@ statements contain expressions
°

expressions create and process objects

introduce the building blocks of a Python program

o distinguish between expressions and statements

@ start to combine data and operations into meaningful
programs

ChR Introduction to Python3

What is a Program?

Definition
A program is a sequence of instructions that the computer
executes to perform a task.

@ each instruction is written as a statement

@ statements often contain one or more expressions

A

area = width * height

@ statement: assignment to area.

@ expression: width * height.

.

ChR Introduction to Python3

Expressions

What is an expression in Python?

@ an expression is something that produces a value

@ the interpreter can evaluate it

try in interpreter

2 + 3

IIHelloll + " n + Ilworldll
len([1, 2, 3]1)

3.14 x (2 **x 2)

A

.

update on the previous comment:
expressions display their result in an interactive session

ChR Introduction to Python3

Statements

@ a statement performs an action
@ examples:

e assign a value to a variable

e print output

e import a module (see later)

o create a loop or conditional (see next block)

x=25 # assignment statement
print(x) # function call statement
import math # import statement

ChR Introduction to Python3

Expressions vs. Statements

Python summary

‘ Expression ‘ Statement
Produces a value? | Yes Not necessarily
Can stand alone? | Sometimes Always
Examples 2 + 3, "A" * 3 | x = 5, print(x)

.

Takeaway

@ be aware what a code snippet does, ie. return something

@ how that is called is less important

A

interpreter behavior

once again, in an interactive session:

@ expressions return a value

@ statements do something but don't return a value

A

ChR Introduction to Python3

Combining Statements and Expressions

Example Program

radius = 3.0
area = 3.1416 * (radius ** 2)
print("Area of circle:", area)

o
in this example:

@ each line is a statement

@ 3.1416 * (radius ** 2) is an expression

@ together, they form a small but complete program

A

ChR Introduction to Python3

Interactive Practice

in the Python interpreter:

@ compute the kinetic energy of an object:
E=0.5*m* v %k 2

@ assign variables m and v and print the result

© add a new statement that doubles the velocity and recomputes

What changes if we enter only the expression 0.5 * m * v ** 2
versus the full assignment?

A

ChR Introduction to Python3

Next

Block::control flow
What makes a program a program?

understand how Python decides what to execute next

learn to use if, elif, and else

use loops (for, while) to repeat actions

combine control flow with expressions and statements to build
small programs

ChR Introduction to Python3

Programs Need Choices and Repetition

How to write a program

@ until now, statements executed only sequentially
@ real programs:

o make decisions (e.g., is a measurement valid?)
o perform actions repeatedly (e.g. analyze all samples, values,
events)

@ Control Flow means deciding and repeating

ChR Introduction to Python3

if Statements

General Form

if condition:

block of code
elif another_condition:
optional block

else:
optional fallback

A

Indentation

first case we see that: defines the block structure in Python

visual clue in code what parts belong together

°

°

@ in interpreter: done automatically
@ in a file: customary to use 4 spaces
°

attention: don’t mix tabs and spaces, always use the same
indentation!

A

ChR Introduction to Python3

Example: Temperature Check

Try in Interpreter

temperature = 37.5

if temperature > 37:

print ("High temperature")
elif temperature < 35:

print ("Low temperature")
else:

print ("Normal range")

v

what happens if temperature = 35.07

ChR Introduction to Python3

Comparison and Logical Operators

Operators: character combinations with special meaning

o Comparison: ==, I=, <, > <= >=

@ Logical: and, or, not

if (temp > 20) and (humidity < 80):
print ("Comfortable conditions")

very common mistake

v

don't confuse assignment = with comparison ==

if temp
versus

20:

if temp == 20:

\,

ChR Introduction to Python3

.

for Loops: Iterate Over a Sequence

sa.mples = ["A", an, IICII]

for s in samples:
print("Analyzing sample", s)

Idea: The loop variable s takes each value in the sequence.

Extra knowledge: iterator

This is another high level concept at work in Python: the iterator.
It's an object, which visits every entry of a data structure when
used in loop.

ChR Introduction to Python3

for loops with iterators

data = [2, 4, 6, 8]
for value in data:
print(value ** 2)
for k in measurements.keys():
print (k)
for k, v in measurements.items():
print(" the key is:", k, "and the value is", v)

ChR Introduction to Python3

range () for Numerical Loops

for i in range(5):
print ("Measurement", i)

range(): a special kind of function

@ range(n) generates numbers from 0 to n-1
@ useful for repeating a fixed number of times
@ try: what is the type of range(n)?

@ makes sense only in a loop context

ChR Introduction to Python3

while Loops: Repeat Until Condition Fails

energy = 10
while energy > O:

print ("Energy:", energy)
energy -= 3

eternal loops

Be careful! Loops must eventually make the condition false, or
they run forever.
This might be wanted, but how does one get out?

ChR Introduction to Python3

Loop Control: break and continue

Two more keywords to control loop behaviour

@ break — exit the loop early.

@ continue — skip to next iteration.

for value in [3, -1, 5, 0, 2]:
if value < O:
continue

.

if value ==
break
print("Positive:", value)

A\

ChR Introduction to Python3

Interactive Practice

Try in the interpreter:

© Write an if statement that classifies a number as positive,
negative, or zero.

@ Create a for loop that prints the square of numbers 1-5.
© Modify it to skip even numbers using continue.

Question: When would you prefer a while loop over a for loop?

ChR Introduction to Python3

Block Summary

@ if/elif/else choose what code to run

@ for and while loops repeat code

@ control flow connects statements into logical programs

ChR Introduction to Python3

