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A few words about this PhD 
● Computer science domain 
●  With the DASHH programm 
● Starting stage  

● ~4months into this  
● Today’s presentaion:

● The first application
● Physics domain 
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Outline        
● Hardware Portability 

● The First Building Block of this project 

● Phase II CMS Outer Tracker Unpacker  

● Shifting the Unpacker to a portability ecosystem        
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Hardware Portability
Portability 
● One code, various devices
● Write for one, run in many 
● Very handy at long duration experiments like 

● LHC

Perfomance portability 
● Not just run but run fast
● Keep code clean, get speed ups on CPU/GPU
● Finds optimal hardware-specific performance
● Abstraction layer programming 

Portable ecosystems 
● Abstraction Library for Parallel Kernel 

Acceleration (alpaka)
● KOKKOS
● SYCL
● OpenMP
● CUDA
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The First Building Block
  Phase II CMS Outer Tracker Unpacker    

Homogeneous compute engine environment Heterogenous compute engine environment 
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CMS Upgrade for High Lumi LHC
Why upgrade CMS
Increasing 
Pile up 

Increasing 
Particle rate 

Computational 
challenges 

PileUp= interactions
bunch crossing

~30 ~60 Up to 200 (expected) 
Run2 Run3 Run4 (HL-LHC) 

CPU

FPGA

GPU

➔ Current tracker design 
● 20-30  Pile ups

➔ Higher Pile up requires:  
➔ Higher detector granularity

● To reduce occupancy 
➔ Increased bandwidth

● To accomodate higher data rates
➔ Needs

● Optimized computing devices 
● Heteregenous architecture 
● Heteregenous programming

Luminosity vs Pile up
Run 1,2,3
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Tracking System for CMS High Lumi LHC

● Inner Tracker (IT): silicon pixel modules
● Outer Tracker (OT): silicon modules with strip 

and macro-pixel sensors
● 2 modules:

● Two strips (2S) modules 
● Strip and Macro pixel sensor (PS) modules

Upgrade :
A completely new tracker is build   
● Increased radiation hardness and forward acceptance 
● Higher granularity
● Compatibility with higher data rates
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Data Flow in CMS  

2 1

● Data gets compressed
➔ Bandwidth optimization

Data gets decompressed

Mimic the DAQ behaviour
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Packer
● Packs the data in ClusterWords of 68 bits 

● Header part 
● Payload part 

Packer/Unpacker Role  

Unpacker 
● Outputs physically relevant variables

● Cluster width 
● Cluster position

● Converts raw data into usable detector clusters
● Prepares data for local reconstruction 

A Cluster Word in a 2S module 
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CMSSW

CMSSW
● CMS framework for data:

● Processing 
● Analysis 

● Mainly C++ based but also python 
● Used for:

● Simulation
● Reconstruction 
● Physics analysis 

● Giant environment
● ~2.5k Packages (top level directories) 
● ~ 5-7 million lines of code  

● Devided in:
● Packages 
● Subpackages
● Files  
e.g. : Unpacker is just some files 
in the subpackage 
Phase2TrackerRawToDigi in
package EventFilter. 
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alpaka 

Abstraction Library for Parallel Kernel 
Acceleration
● Header-only C++20 abstraction library
● Offers Performance Portability 
● Targets heteregenous architecture 
● Explores all underlying level of parallelism
● Compile time flags can be used for different 

accelerators 

e.g.  
DALPAKA_ACC_GPU_CUDA_ENABLED

Key features
● Zero runtime overhead  

● abstraction resolved at compile time
● Flexible backend support: CUDA, OpenMP,  

HIP, etc
● Hierarchical parallelism: grid, block, thread, 

element levels
● Enables unified code for both CPU and GPU
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● Used for the Heteregenous architecture in CMS

● A bit different from the raw alpaka 

● Initial goal:

● To migrate the GPU codes from CUDA, to be used in 

● Nvidia GPUs 

● AMD GPUs

● Selected over other Portability libraries as a result of CMS internal 
evaluation process 

CMSSW Adaption of Alpaka



  

Shifting the Unpacker to a Portablity 
ecosystem 
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The Present Homogenous Code (Unpacker) 
RawToCluster.cc
● Unpacker file 

● In sub-package Phase2TrackerRawToDigi
● In package  EventFilter

Motivation to port 
● More heteregenous architecture in HL-LHC
● Performance can get better with alpaka 
Roofline model 

➔ perfomance as a function of artimetic intensity
➔ Integer operations per seconds vs Integer operations per byte  

● It shows, the code is sub-optimal  
● Heteregenous architecture 

● Reduce the bottlenecks
● Higher memory bandwidth
● Higher compute throughput 
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Method Used for Porting 
Original Code Ported Code 

● Once for the process
● Build a stack map of Detector Ids  

● Per each Event
● Loop Over DTCs ( 216 ≥)
● Loop Over Slinks ( 4 ≥)
● Read Header & Offset words 
● Loop over channels (36 ≥)
● Get DetIDs
● Read channel Header
● Read Strip Payloads
● Read Pixel Payloads
● Unpack Per Module (2S/PS) 

● Once for the process
● Build a stack map of 

Detector Ids
● Loop Over DTCs ( 216 ≥)
● Loop Over Slinks ( 4 ≥)
● Loop over channels (36 ≥)

● Get the module type/Info
● Store it in a buffer for 

later use
● Per each Event

● Get the RAW data
● Store in a buffer 

(LinearData) 
● .data
● .size
● Offset  

● Loop Over LinerData
● Read Header & Offset 

words
● Loop over channels (36 ≥)
● Get DetIDs
● Read channel Header
● Read Strip Payloads
● Read Pixel Payloads
● Unpack Per Module 

(2S/PS)

Parallelization per each step

CPU CPU

GPU
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Current Progress  
Original Code Ported Code 

● Once for the process
● Build a stack map of Detector IDs

● Per each Event
● Loop Over DTCs ( 216 ≥)
● Loop Over Slinks ( 4 ≥)
● Read Header & Offset words 
● Loop over channels (36 ≥)
● Get DetIDs
● Read channel Header
● Read Strip Payloads
● Read Pixel Payloads
● Unpack Per Module (2S/PS) 

● Once for the process
● Build a stack map of 

Detector Ids
● Loop Over DTCs ( 216 ≥)
● Loop Over Slinks ( 4 ≥)
● Loop over channels (36 ≥)

● Get the module type/Info
● Store it in a buffer for 

later use
● 216 X 4 = 864 parallel 

threads
● Per each Event

● Get the RAW data
● Store in a buffer 

(LinearData) 
● .data
● .size
● Offset  

● Loop Over LinerData
● Read Header & Offset 

words
● Loop over channels (36 ≥)
● Get DetIDs
● Read channel Header
● Read Strip Payloads
● Read Pixel Payloads
● Unpack Per Module 

(2S/PS)

Paralleization per each step

CPU

CPU

GPU

Under Debugging 

Under Development 

Successfully Ported 
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Evaluation    
● Match head to head the current resutls with the CPU code 

● A current stage head to head matching is not clearly possible 
● What one can do is to match some variables using only the serial backend of alpaka

To verify the correctness at this stage  
● And with that at the current stage we get a complete match with reading the data   

CPU Alpaka 
Serial



  
18

Further Progress of the first building block  

● Complete the porting 
● Cross check the correctness 
● Evaluate the performace 
● Possible Optimizations   



  

Thank You
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