

Hardware-portable Data Analysis
Building Blocks for the High

Luminosity LHC

Mohammad Nasir Jan Momed FH SciComp Workshop

A few words about this PhD
● Computer science domain
● With the DASHH programm
● Starting stage

● ~4months into this
● Today’s presentaion:

● The first application
● Physics domain

 02

Outline
● Hardware Portability

● The First Building Block of this project

● Phase II CMS Outer Tracker Unpacker

● Shifting the Unpacker to a portability ecosystem

 03

Hardware Portability
Portability
● One code, various devices
● Write for one, run in many
● Very handy at long duration experiments like

● LHC

Perfomance portability
● Not just run but run fast
● Keep code clean, get speed ups on CPU/GPU
● Finds optimal hardware-specific performance
● Abstraction layer programming

Portable ecosystems
● Abstraction Library for Parallel Kernel

Acceleration (alpaka)
● KOKKOS
● SYCL
● OpenMP
● CUDA

 04

Hardware Portability
Portability
● One code, various devices
● Write for one, run in many
● Very handy at long duration experiments like

● LHC

Perfomance portability
● Not just run but run fast
● Keep code clean, get speed ups on CPU/GPU
● Finds optimal hardware-specific performance
● Abstraction layer programming

Portable ecosystems
● Abstraction Library for Parallel Kernel

Acceleration (alpaka)
● KOKKOS
● SYCL
● OpenMP
● CUDA

The First Building Block
 Phase II CMS Outer Tracker Unpacker

Homogeneous compute engine environment Heterogenous compute engine environment

06

CMS Upgrade for High Lumi LHC
Why upgrade CMS
Increasing
Pile up

Increasing
Particle rate

Computational
challenges

PileUp= interactions
bunch crossing

~30 ~60 Up to 200 (expected)
Run2 Run3 Run4 (HL-LHC)

CPU

FPGA

GPU

➔ Current tracker design
● 20-30 Pile ups

➔ Higher Pile up requires:
➔ Higher detector granularity

● To reduce occupancy
➔ Increased bandwidth

● To accomodate higher data rates
➔ Needs

● Optimized computing devices
● Heteregenous architecture
● Heteregenous programming

Luminosity vs Pile up
Run 1,2,3

 07

Tracking System for CMS High Lumi LHC

● Inner Tracker (IT): silicon pixel modules
● Outer Tracker (OT): silicon modules with strip

and macro-pixel sensors
● 2 modules:

● Two strips (2S) modules
● Strip and Macro pixel sensor (PS) modules

Upgrade :
A completely new tracker is build
● Increased radiation hardness and forward acceptance
● Higher granularity
● Compatibility with higher data rates

 08

Data Flow in CMS

2 1

● Data gets compressed
➔ Bandwidth optimization

Data gets decompressed

Mimic the DAQ behaviour

 09

Packer
● Packs the data in ClusterWords of 68 bits

● Header part
● Payload part

Packer/Unpacker Role

Unpacker
● Outputs physically relevant variables

● Cluster width
● Cluster position

● Converts raw data into usable detector clusters
● Prepares data for local reconstruction

A Cluster Word in a 2S module

 10

CMSSW

CMSSW
● CMS framework for data:

● Processing
● Analysis

● Mainly C++ based but also python
● Used for:

● Simulation
● Reconstruction
● Physics analysis

● Giant environment
● ~2.5k Packages (top level directories)
● ~ 5-7 million lines of code

● Devided in:
● Packages
● Subpackages
● Files
e.g. : Unpacker is just some files
in the subpackage
Phase2TrackerRawToDigi in
package EventFilter.

 11

alpaka

Abstraction Library for Parallel Kernel
Acceleration
● Header-only C++20 abstraction library
● Offers Performance Portability
● Targets heteregenous architecture
● Explores all underlying level of parallelism
● Compile time flags can be used for different

accelerators

e.g.
DALPAKA_ACC_GPU_CUDA_ENABLED

Key features
● Zero runtime overhead

● abstraction resolved at compile time
● Flexible backend support: CUDA, OpenMP,

HIP, etc
● Hierarchical parallelism: grid, block, thread,

element levels
● Enables unified code for both CPU and GPU

 12

● Used for the Heteregenous architecture in CMS

● A bit different from the raw alpaka

● Initial goal:

● To migrate the GPU codes from CUDA, to be used in

● Nvidia GPUs

● AMD GPUs

● Selected over other Portability libraries as a result of CMS internal
evaluation process

CMSSW Adaption of Alpaka

Shifting the Unpacker to a Portablity
ecosystem

14

The Present Homogenous Code (Unpacker)
RawToCluster.cc
● Unpacker file

● In sub-package Phase2TrackerRawToDigi
● In package EventFilter

Motivation to port
● More heteregenous architecture in HL-LHC
● Performance can get better with alpaka
Roofline model

➔ perfomance as a function of artimetic intensity
➔ Integer operations per seconds vs Integer operations per byte

● It shows, the code is sub-optimal
● Heteregenous architecture

● Reduce the bottlenecks
● Higher memory bandwidth
● Higher compute throughput

 15

Method Used for Porting
Original Code Ported Code

● Once for the process
● Build a stack map of Detector Ids

● Per each Event
● Loop Over DTCs (216 ≥)
● Loop Over Slinks (4 ≥)
● Read Header & Offset words
● Loop over channels (36 ≥)
● Get DetIDs
● Read channel Header
● Read Strip Payloads
● Read Pixel Payloads
● Unpack Per Module (2S/PS)

● Once for the process
● Build a stack map of

Detector Ids
● Loop Over DTCs (216 ≥)
● Loop Over Slinks (4 ≥)
● Loop over channels (36 ≥)

● Get the module type/Info
● Store it in a buffer for

later use
● Per each Event

● Get the RAW data
● Store in a buffer

(LinearData)
● .data
● .size
● Offset

● Loop Over LinerData
● Read Header & Offset

words
● Loop over channels (36 ≥)
● Get DetIDs
● Read channel Header
● Read Strip Payloads
● Read Pixel Payloads
● Unpack Per Module

(2S/PS)

Parallelization per each step

CPU CPU

GPU

 16

Current Progress
Original Code Ported Code

● Once for the process
● Build a stack map of Detector IDs

● Per each Event
● Loop Over DTCs (216 ≥)
● Loop Over Slinks (4 ≥)
● Read Header & Offset words
● Loop over channels (36 ≥)
● Get DetIDs
● Read channel Header
● Read Strip Payloads
● Read Pixel Payloads
● Unpack Per Module (2S/PS)

● Once for the process
● Build a stack map of

Detector Ids
● Loop Over DTCs (216 ≥)
● Loop Over Slinks (4 ≥)
● Loop over channels (36 ≥)

● Get the module type/Info
● Store it in a buffer for

later use
● 216 X 4 = 864 parallel

threads
● Per each Event

● Get the RAW data
● Store in a buffer

(LinearData)
● .data
● .size
● Offset

● Loop Over LinerData
● Read Header & Offset

words
● Loop over channels (36 ≥)
● Get DetIDs
● Read channel Header
● Read Strip Payloads
● Read Pixel Payloads
● Unpack Per Module

(2S/PS)

Paralleization per each step

CPU

CPU

GPU

Under Debugging

Under Development

Successfully Ported

17

Evaluation
● Match head to head the current resutls with the CPU code

● A current stage head to head matching is not clearly possible
● What one can do is to match some variables using only the serial backend of alpaka

To verify the correctness at this stage
● And with that at the current stage we get a complete match with reading the data

CPU Alpaka
Serial

18

Further Progress of the first building block

● Complete the porting
● Cross check the correctness
● Evaluate the performace
● Possible Optimizations

Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

