
ASAPO: A High-performance
streaming framework for
real-time data analysis

Mikhail Karnevskiy
DESY IT

SciComp Workshop 2025

03 July, 2025

Page 2

Asapo introduction

● High-bandwidth communication between state-of-the-art detectors, control system, the
storage system, and independent analysis processes across DESY facility

● In-memory data transfer with optional caching on disc
● Large, scalable in-memory cache
● Saving data to disc as service
● Deliver data from disc

● Easy to use C++/Python interfaces:
● Producer: sends data to Asapo
● Consumer: get data from Asapo

● Stays for: Online data-processing. Data reduction. Feedback.

Page 3

Asapo Data flow

● Communication between different components across DESY facility

● Data-buffet with optional caching on disc

● Data writing goes in parallel with processing

● Multiple components are provided as a service for scientists

Page 4

Challenges

● Data-flow at kHz rate for 9M (highly compressed) images.

● Different detectors streams the data in different formats and being controlled in different
ways

● Control data may come from different sources

● Data stream may not know, when it finishes

● Reprocessing may be requested at any time

● Minimum action from beamline scientists: data-processing as service

● Very little time for commissioning

Page 5

Asapo worker

● Uses Python or Cpp Asapo clients
● Data processing with a chain of workers
● Communication via Asapo service

● Workers does not know each other, but knows data-source to
retrieve.

● Worker runs constantly and solves a problem of stream
switching.

Examples:
● Saving data to file
● Radial integration of

diffraction rings

Page 6

Asapo API

● Producers and consumer configured are fully independent
● All components, including central service does not know, how many client are

running
● Configuration is done using central endpoint, stream and data-source name

Page 7

Data in ASAPO

● Messages are indexes from 1 to N and form Stream.
● Streams are uniquely identified by its name, beamtime and data-source name
● Each message contains a binary data blob and a JSON metadata.
● Separate handling of data and metadata.

● Data is stored in memory-cache and on disk, metadata is stored in database
● This enables rich API and high throughput

● Synchronization of streams: several data-sources can be combined into a dataset

Page 8

Pipeline example

● ASAPO-Eiger-Connector ingests data from the Eiger
ZMQ stream to ASAPO

● (Optional) Binner reduces images resolution to speed up later
● processing steps
● CrystFEL for peak search, indexing, and integration
● OM (OnDA Monitor) for live visualization
● Nexus writer can write raw, binned, or filtered (hits only) images and metadata to

disk, depending on which data source it is connected to
● Currently, geometry/analysis results are read/written by CrystFEL from/to disk

directly

Page 9

Monitoring
● Monitoring is based on Grafana + InfluxDB
● Logging is based on Kibana and Elasticsearch

Try ASAPO
● Git at DESY: https://gitlab.desy.de/asapo

● Pipy client packages.

● Docs: https://asapo.pages.desy.de/asapo/

ASAPO standalone service:

● Single docker with all asapo services
● Monitoring via Grafana
● Limited functionality (not scalable)
● Fully functional API

Page 11

Summary
● Asapo is a streaming platform and service provided by DESY-IT

● Service is user at several beamlines at Petra III to establish data-flow and
enable online data-processing

● Services are update few times per years to provide new features. Bugfixes-
updates are possible during the user-run.

● Current development is focused to establish streaming-based data-flow.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	DataInAsapo
	Pipeline
	Slide 9
	Summary
	Slide 11

