Pepper: a framework for

columnar data analysis in CMS

Dominic Stafford, Laurids Jeppe

] 04.07.2025
| FH SciComp Workshop

Columnar programming

« HEP analyses consist of many steps

- Define derived quantities
- Apply cuts to select events

— Produce histograms or smaller data skims
for further processing

* Traditional analysis frameworks have
used event loops

- Perform all operations on one event, then
start on next event

* However for loops in Python are very slow i
2 . Event loop

Columnar programming

* Alternative for Python: columnar
processing

- Perform all operations simultaneously
on a chunk of data

* Familiar to users of numpy in python
* Allows for vectorisation of operations

* Allows faster loading of data from
ROOT files

Awkward and Coffea

* HEP events have different numbers of leptons, jets, etc.
- Not suitable for numpy k d
* New package Awkward developed to handle AH Qwar
these jagged arrays rray

— Initially a wrapper around numpy, now dedicated C++ bindings
* Extended by Coffea, which offers a basic analysis

framework |
— 4-vector manipulation, scale-out to clusters, CMS object ?
corrections e

* Initially developed by CMS members, but designed to be Q
more broad — now explored by all LHC collaborations

Scikit-hep ecosystem

» Scikit-hep is an ecosystem of tools for HEP U rOOt
analyses, e.g.:

- ROOT file loading

- Histogramming thép S
- Plotting —x \\\

* Based on scientific python ecosystem, so AT\ 1
familiar to most python users matplthb

— Can export to common industry tools

* Dask package is used for scale-out to condor r' daSk

5

Pepper - ParticlE Physics ProcEssoR

* Development started in 2019 by Jonas Ruebenach and DS
INn response to:

- New lightweight CMS data format “NanoAOD”
- Scikit-HEP developments/ familiarity with python

* Extends coffea with functionality for full CMS analyses,
and scale-out tuned to run on NAF/BIRD

* Developed into a general-purpose framework in response
to interest from many DESY groups

Code structure

Users write their analysis in a Processor class:

- Inherited from coffea
- Pre-made implementations of standard CMS cuts and corrections
- Users can write new cuts/corrections as python functions

Book-keeping handled by Selector class:

- Keeps track of cuts, SFs and systematics
— Calls processor functions which define these

Automatically fills histograms after each step (configurable)

Can also produce skims for further processing (e.g. ML)

Main process function

selector.add_cut("NoAddLeps", Apply Ie.pton ObJeCt cuts
partial[self.nn_additinnal_leptnns,Ais_m/c])/ (Conflg Controlled)
selector.set_column("Electron”, self.pick_electrons)

selector.set_column("Muon", self.pick_muons) Combine into one column
selector.set_column("Lepton”, partial(
self.build_lepton_column, is_mc, selector.rng))

¥ Wait with hists Ffilling after channel masks are available Apply two Iepton selection

selector.add_cut("AtlLeast2Leps”, partial(self.lepton_pair, is_mc),

no_callback=True) ..)
selector.set_multiple_columns(self.channel_masks) / Sp“t |Ien;ct)0$]a;|ea%gﬁfs on

selector.set_cat("channel”, {"is_ee", "is_em", "is_mm"})
selector.set_column("mll", self.mass_lepton_pair)

selector.set_column("dilep_pt", self.dilep_pt, lazy=True) < Setcolumns based on
dilepton kinematics

Gitlab link

https://gitlab.cern.ch/pepper/pepper/-/blob/master/example/example_plotting.json?ref_type=heads

Cut function example

def lepton_pair(self, is_mc, data):

Basic selection
"etSelect events that contain at least two leptnnE‘111/////////////////////
accept =

= np.asarray(ak.num({datal"Lepton"]) »= 2)

if is_mc: Compute_ SFs and
weight, systematics = self.compute_lepton_sf(datalaccept]) SyStema“CS for MC
accept = accept.astype(float) . . .
accept[accept.astype(bool)] #*= np.asarray(weight)-< Comblne SF V\./elghtS Wlth
return accept, systematics selection

glse:

return accept

Gitlab link

https://gitlab.cern.ch/pepper/pepper/-/blob/master/example/example_plotting.json?ref_type=heads

10

Scale-out

* Can run over files stored either locally (on DCache) or on the
LHC computing grid (via xrootd)

* Initially opens files and calculates splitting into chunks (cached)

* Can be run locally (in debug mode) or scaled out via dask:

— Manager process starts condor jobs, then sends the workers code
and indexes of chunks to process via tcp

— Workers then open appropriate files, and send histograms back via
tcp

* Output accumulated on log-in node, and store periodically to
allow resuming in case of errors

Code and Installing

* Code stored on CERN gitlab

- Simple CI for code style and basic running
* Dependencies mostly from Icgenv
* Can then install pepper via pip

* User should then write classes inheriting from pepper
classes

11

https://gitlab.cern.ch/pepper/pepper

12

Currently used by ~12 analyses at DESY, plus 5
publications

- Largest, but not only, CMS columnar framework on NAF
Also being used by a few users at other institutes/facilities

Covers most types of CMS analyses (searches, unfolded
measurements, etc.)

Tutorial at multiple CMS Data Analysis Schools [1], [2], [3]

https://indico.desy.de/event/38207/contributions/152490/
https://indico.cern.ch/event/1388937/page/34642-long-exercises
https://indico.cern.ch/event/1462056/page/35852-list-of-long-exercises-and-descriptions

User experience

e Easy to learn for new users with numpy experience

- Can start addressing physics problems within a few days
- Transition for event-loop users can take longer

e Usually flexible with fast time-to-insight
* Large pool of users at DESY allows sharing experience

 Some more complex functions harder to code in a
columnar way

* Bottle-necks aren’t always obvious to the user

13

Performance

* Generally very fast: can typically run a single year of an
analysis (without systematics) in < 30 mins

— Main bottleneck is getting condor workers
 However complex analyses can take notably longer

— Main bottleneck high memory usage
— Can be due to either variables or histograms in memory
- Memory on log-in nodes sometimes an issue
* Initial profiling has already yielded some improvements

— Scope for more
14

Issues encountered

* Not very clear to users how much memory workers need, and
when jobs exceed memory

— Considering limiting memory usage in dask

* High memory usage on the log-in node could be avoided by
running main process in a condor job

— But this can then not launch further condor jobs

* IT have reported issues with pepper jobs putting heavy 1/O load on
afs

- Unclear what files are being accessed: possibly some dask internal
files?
15

Outlook and Future Plans

* Pepper is a broadly use columnar framework in DESY
CMS

* Generally well received by users

 Some issues due to memory usage and file system access
encountered

- Aim to follow up on these with IT
* Plan to do more profiling and work on documentation soon

16

17

Configuration

"electron_sf": [
[
"SDATADIR/scale_factors/egammaEffi.txt_EGM2D_updatedAll.root",
"EGamma_SF2D",
["eta", "pt"]

] Specify SFs from
[ROOT files

"SDATADIR/scale_factors/20818_FlectronMVAS8.root™,
"EGamma_SF2D",
[IIEtaII \ llptll]

]I
"ele_cut_transregq": true, EleCtron ObjeCt deﬁnition

"ele_eta_min": -2.4,
"ele_eta_max": 2.4,
"good_ele_id": "mva:Isof@",
"good_ele_pt_min": 20.8,
"additional_ele_id": "mva:Iso%@",
"additional_ele_pt_min": 20.8,

18 Gitlab link

https://gitlab.cern.ch/pepper/pepper/-/blob/master/example/config_ttbarll.json?ref_type=heads

Histogramming

"leading_electron_pt": {
"pins": [
{

"mame": "pt",

"label": "Electron $p_{\\mathrm{T}}%",

"n_or_arr": 160,
"lo": @,
"hi": 480,
"unit": "GeW"
}
1,
"Fillr: {
"ot [
"Electron®,
"pt",
{"leading": 1}
]

Gitlab link
19

By default histograms plotted after
each cut

- Includes selector categories and
systematics by default

— Can restrict cuts, etc. to save memory
Histograms defined in configuration

— Helper functions for simple derived
guantities, e.g. multiplicities

— Can also be multi-dimensional

Can save in root or hist (coffea pickle)
format

https://gitlab.cern.ch/pepper/pepper/-/blob/master/example/config_ttbarll.json?ref_type=heads

Plotting

* Configurable plotting script for hist ~ _ ,CMS 509 2018(13Tev)
hIStOgramS 2 105;’ : :t{\\// - ttJncertainty
. . o i B Single to ¢ Data
* Intended as starting point for o 10 ol

users 10
102k
"hackgrounds": { F
"py": { 101k
"label": "Drell-Yan", §
"color": "tab:purple", 100k
"datasets": [g
"D¥JetsTolLL_M-18to58_TuneCP3_13TeV-madgraphMLM-pythiad", S 10_1,
"DY¥JetsToLL_M-58_TuneCP5_13TeV-madgraphMLM-pythiag" o 1.05F
] o + l
b 8 1,00 egoomisningaes oo econ: LT Ty h. |' §
nTTr: ég e :ﬁ'-f\”b ‘Nﬁt # TH i
"label": "$t \\bar{tl}s", 0.75F % ’
"color": "tab:blue", T T T T 1
"datasets": [0 50 100 150 200 250 300 350 400
20 "TTTo2L2Nu_TuneCP5_13TeV-powheg-pythias", Lepton prt (GeV)

"TTToSemiLeptonic_TuneCP5_13Tev-powheg-pythiag” Gitlab link

https://gitlab.cern.ch/pepper/pepper/-/blob/master/example/example_plotting.json?ref_type=heads

