
 1

Dominic Stafford, Laurids Jeppe

04.07.2025
FH SciComp Workshop

Pepper: a framework for
columnar data analysis in CMS

 2

Columnar programming

● HEP analyses consist of many steps
– Define derived quantities

– Apply cuts to select events

– Produce histograms or smaller data skims
for further processing

● Traditional analysis frameworks have
used event loops
– Perform all operations on one event, then

start on next event

● However for loops in Python are very slow

 3

Columnar programming

● Alternative for Python: columnar
processing
– Perform all operations simultaneously

on a chunk of data
● Familiar to users of numpy in python
● Allows for vectorisation of operations
● Allows faster loading of data from

ROOT files

 4

Awkward and Coffea

● HEP events have different numbers of leptons, jets, etc.
– Not suitable for numpy

● New package Awkward developed to handle
these jagged arrays
– Initially a wrapper around numpy, now dedicated C++ bindings

● Extended by Coffea, which offers a basic analysis
framework
– 4-vector manipulation, scale-out to clusters, CMS object

corrections
● Initially developed by CMS members, but designed to be

more broad – now explored by all LHC collaborations

 5

Scikit-hep ecosystem

● Scikit-hep is an ecosystem of tools for HEP
analyses, e.g.:
– ROOT file loading
– Histogramming
– Plotting

● Based on scientific python ecosystem, so
familiar to most python users
– Can export to common industry tools

● Dask package is used for scale-out to condor

 6

Pepper - ParticlE Physics ProcEssoR

● Development started in 2019 by Jonas Ruebenach and DS
in response to:
– New lightweight CMS data format “NanoAOD”
– Scikit-HEP developments/ familiarity with python

● Extends coffea with functionality for full CMS analyses,
and scale-out tuned to run on NAF/BIRD

● Developed into a general-purpose framework in response
to interest from many DESY groups

 7

Code structure

● Users write their analysis in a Processor class:
– Inherited from coffea

– Pre-made implementations of standard CMS cuts and corrections

– Users can write new cuts/corrections as python functions

● Book-keeping handled by Selector class:
– Keeps track of cuts, SFs and systematics

– Calls processor functions which define these

● Automatically fills histograms after each step (configurable)
● Can also produce skims for further processing (e.g. ML)

 8

Main process function

Apply lepton object cuts
(config controlled)

Combine into one column

Apply two lepton selection

Split into categories on
lepton flavour

Set columns based on
dilepton kinematics

Gitlab link

https://gitlab.cern.ch/pepper/pepper/-/blob/master/example/example_plotting.json?ref_type=heads

 9

Cut function example

Basic selection

Compute SFs and
systematics for MC

Combine SF weights with

selection

Gitlab link

https://gitlab.cern.ch/pepper/pepper/-/blob/master/example/example_plotting.json?ref_type=heads

 10

Scale-out

● Can run over files stored either locally (on DCache) or on the
LHC computing grid (via xrootd)

● Initially opens files and calculates splitting into chunks (cached)
● Can be run locally (in debug mode) or scaled out via dask:

– Manager process starts condor jobs, then sends the workers code
and indexes of chunks to process via tcp

– Workers then open appropriate files, and send histograms back via
tcp

● Output accumulated on log-in node, and store periodically to
allow resuming in case of errors

 11

Code and Installing

● Code stored on CERN gitlab
– Simple CI for code style and basic running

● Dependencies mostly from lcgenv
● Can then install pepper via pip
● User should then write classes inheriting from pepper

classes

https://gitlab.cern.ch/pepper/pepper

 12

Usage

● Currently used by ~12 analyses at DESY, plus 5
publications
– Largest, but not only, CMS columnar framework on NAF

● Also being used by a few users at other institutes/facilities
● Covers most types of CMS analyses (searches, unfolded

measurements, etc.)
● Tutorial at multiple CMS Data Analysis Schools [1], [2], [3]

https://indico.desy.de/event/38207/contributions/152490/
https://indico.cern.ch/event/1388937/page/34642-long-exercises
https://indico.cern.ch/event/1462056/page/35852-list-of-long-exercises-and-descriptions

 13

User experience

● Easy to learn for new users with numpy experience
– Can start addressing physics problems within a few days
– Transition for event-loop users can take longer

● Usually flexible with fast time-to-insight
● Large pool of users at DESY allows sharing experience
● Some more complex functions harder to code in a

columnar way
● Bottle-necks aren’t always obvious to the user

 14

Performance

● Generally very fast: can typically run a single year of an
analysis (without systematics) in < 30 mins
– Main bottleneck is getting condor workers

● However complex analyses can take notably longer
– Main bottleneck high memory usage
– Can be due to either variables or histograms in memory
– Memory on log-in nodes sometimes an issue

● Initial profiling has already yielded some improvements
– Scope for more

 15

Issues encountered

● Not very clear to users how much memory workers need, and
when jobs exceed memory
– Considering limiting memory usage in dask

● High memory usage on the log-in node could be avoided by
running main process in a condor job
– But this can then not launch further condor jobs

● IT have reported issues with pepper jobs putting heavy I/O load on
afs
– Unclear what files are being accessed: possibly some dask internal

files?

 16

Outlook and Future Plans

● Pepper is a broadly use columnar framework in DESY
CMS

● Generally well received by users
● Some issues due to memory usage and file system access

encountered
– Aim to follow up on these with IT

● Plan to do more profiling and work on documentation soon

 17

Backup

 18

Configuration

Electron object definition

Specify SFs from
ROOT files

Gitlab link

https://gitlab.cern.ch/pepper/pepper/-/blob/master/example/config_ttbarll.json?ref_type=heads

 19

Histogramming

● By default histograms plotted after
each cut

– Includes selector categories and
systematics by default

– Can restrict cuts, etc. to save memory

● Histograms defined in configuration

– Helper functions for simple derived
quantities, e.g. multiplicities

– Can also be multi-dimensional

● Can save in root or hist (coffea pickle)
formatGitlab link

https://gitlab.cern.ch/pepper/pepper/-/blob/master/example/config_ttbarll.json?ref_type=heads

 20

Plotting

● Configurable plotting script for hist
histograms

● Intended as starting point for
users

10 1

100

101

102

103

104

105

106

Ev
en

t y
ie

ld

59.9 fb 1, 2018 (13 TeV)CMS
VV
ttV
Single top
Drell-Yan

tt
Uncertainty
Data

0 50 100 150 200 250 300 350 400
Lepton pT (GeV)

0.75

1.00

1.25

D
at

a
/ P

re
d.

Gitlab link

https://gitlab.cern.ch/pepper/pepper/-/blob/master/example/example_plotting.json?ref_type=heads

