

Automated Quality Control for SiPM-on-Tile Modules in the CMS HGCAL Upgrade

FH SciComp Workshop'25 Matthias Komm, Katja Krueger, Antoine Laudrain, Jia-Hao Li, Mathias Reinecke, Felix Sefkow, Anurag Sritharan (DESY CMS & FTX groups)

Outline

- The CMS high granular calorimeter upgrade (HGCAL) for HL-LHC
- SiPM-on-tile module production at DESY
- Software for automatic quality control
- Outlook:Tileboard/module tracking tool
- Summary

Introduction

- ho HL LHC luminosity will reach $5-7.5 imes 10^{34} {
 m cm}^{-2} {
 m s}^{-1}$
 - = 4x higher than currently!
- Up to **200 pileup** events expected
- LHC detectors have to be upgraded!

- CMS high granularity calorimeter (HGCAL)
 - = entirely new calorimeter in both endcaps
 - Covers $1.5 < |\eta| < 3$
 - Electromagnetic & hadron calorimeter parts
 - Finely-segmented & radiation-hard
 - Contributes to event trigger decision

Composition

- CE-E: Electromagnetic calorimeter
 - Hexagonal silicon modules
 - ullet Cu, CuW, Pb absorbers, 26 layers ($pprox 28 X_0$)
- CE-H: Hadronic calorimeter
 - Hexagonal silicon modules (similar as CE-E)
 - Scintillator tiles in regions with lower radiation (< $5 \cdot 10^{13} \rm n/cm^2$) w/ silicon photomultipliers (SiPMs) for readout
 - ullet Cu/Steel absorbers, 21 layers ($pprox 10\lambda$ including CE-E)
- Key parameters
 - 6M silicon channels from 26k modules (620m²)
 - 240k SiPM-scintillator channels from 3.7k tileboards (370m²)
 - Cooled to -30°C using two phase CO₂ cooling
 - 220t per endcap

SiPM, Tiles & Boards

SiPM-on-tile originally developed by CALICE for e⁺e⁻

- Trapezoidal scintillator tiles (1.25°)
 - Wrapped in reflecting foil
 - 3mm thickness
 - Size increases radially from 2 to 5.5cm
 - Cast/machined or injection-molded
- > SiPMs
 - Radiation-tolerant & low dark-rate after irradiation
 - High photon detection efficiency
 - Includes UV-LED system for initial calibration
- Tile boards
 - 8 main geometrical form factors
 - Typically 8 x 8 = 64 tiles/SiPMs per board (requires only 1 HGCROC readout chip)

MPPCs

SiPM-on-tile module signals

- MIP pulse shape in DESY II testbeams
 - Read out time stamp
 from beam trigger system
 - MIP signal visible across 3 bunch crossings

- Dynamic range
 - Read ADC at max. pulse
 when signal is small (~10 MIPs)
 - Higher signals covered by time-over-threshold (TOT)
 - ADC at previous bunch crossing read out for pedestal subtraction

Assembly overview

- Scintillator tiles
 - Moulding tiles at FNAL
 - Cast tiles from NIU
- Fileboard/module assembly & tests
 - Production target per site
 - 2'000 boards/modules in total
 - 150 modules/month
 - DESY: ZE assembly; FTX/CMS tests
 - US: board test (UMD),module assembly + tests (FNAL)
- Cassette assembly at FNAL
 - → Coordination & regular exchange required between sites

Quality Control: Goals

- Verify functionality of board
 - Smoke test: boards can be powered(Vcc: 11V; SiPM bias: 48V; LED: 5-8V)
 - Communication with readout chip
- Verify calibration of chip/board
 - Derive initial calibration per board/chip (provides also good starting point for operation in cosmic test stand/cassette test)
 - Calibrate sensors (temperature, voltage, current)
 - Adjust pedestals to common ADC level
 - Adjust timing (TOA & TOT)
 - Define transition ADC → TOT

QC tests at DESY

Tileboard QC (PCB+SiPMs)

Tilemodule assembly

Tilemodule QC (cosmics)

send to FNAL

Quality control SW requirements

- Multi-step procedure
 - Data-taking; parameter scans; analysis;
 deriving/loading new chip configuration files
- Many parameters
 - Per chip half or per channel
- Many outputs
 - Raw/ROOT files; analysis results (HDF5);
 plots & tables
- All of this needs to be ...
 - Reproducible
 - Operated by non-experts
 - Work "fast"; 30min/board for standard tests
 - Automated to minimize expert intervention
 - Stop early in case of hardware failures

TBQC framework

- New framework build on top of FPGA-based DAQ (purely written in python)
- Goal: streamline QC steps into big chains
- Modular approach
 - Easy to add/remove data-taking & analysis steps
 - Clear configuration and QC flow
 - Each step interacts with data store to add/retrieve results
 - Hardware operation through interfaces
- Organizes QC results into reports containing data for plots & tables + descriptions/comments
- Extensive gitlab CI tests to ensure code quality (pytest, flake8, mypy, coverage)
- Browser-based GUI foreseen as well

```
defaultConfig = {
                                           Central
    "firmware": "tileboard-triple-v3p0".
                                           OC config
    "kriaIP": "test-fpga-5",
    "HGCROCVersion": "3a".
    "convGain": 4,
    "baseOutputDir": "/home/hgcal/testdata/",
    "pedestalTarget": 150,
    "pedestalLowerLimit": 145,
    "pedestalUpperLimit": 155.
Γ...
kriaService = KriaServices()
                                      Prepare
kriaService.connect()
                                      hardware
kriaService.loadFirmware()
kriaService.startDAOServer()
kriaService.startSlowControlServer()
kriaService.startDAOClient()
runner = Runner(
                                   QC flow
   runnables=[
       configGenerator,
       GlobalPedestalDAO, globalPedestalAna,
       TriminvDAO, triminvAna,
       dacbDAQ, dacbAna,
       pedestalDAO.pedestalAna.
[...]
                                    Execute steps
dataStore = DataStore(metaInfo = ...)
runner.runAll(dataStore)
```

Software structure

QC results

- Data store per run to pass & serialize information between steps
 - Input/output file paths
 - Run parameters & resulting chip configs
 - Detailed QC reports
 - Script to generate quick visualization as HTML page from saved reports
- Storage (~30TB required for all boards/modules)
 - Common EOS space at CERN foreseen
 - Can be queried to fill a subset of QC results into official CMS DBs
 - Enables meta analyses
 (eg. variations between boards)
 - Share chip configuration with cassette assembly

System administration

- Need easy way to configure QC PCs
 - & FPGA-based DAQ systems
 - Distribute SW updates to all devices
 - Ensure consistent setup at QC stations;
 no debugging/SW developments
 - 2 dedicated stations for developments foreseen
- Bottleneck
 - At DESY DAQ systems are in special network
 - → No access to internet; local service needed!
- Solution: Ansible
 - Open-source automation tool for configuration management, application deployment, and orchestration
 - Only needs to be installed on a control node
 - All managed nodes will be controlled via SSH

Tileboard/module tracking system

- Motivation
 - Need a system to keep track of tileboard/modules internally at DESY
 - Easy to connect various information sources (eg. assembly)
 - Can be used to figure out what boards have been processed at which QC station, when & by whom
 - QC operators need easy access from all stations
 - Useful if a board is lost+found → figure out its history (eg. who has handled it in the past and when/why)
- Solution suggested by DESY IT
 - Oracle APEX application
 - Web frontend + Oracle DB as backend
 - Hosted at DESY directly; backup every day
 - Automatically query/add entries through REST API
 - Also useful to collect inputs to be uploaded to CMS assembly DB
 - Prototype → next slides

Tracking system prototype

Search board history by serial number easy to use barcode scanner at QC stations

Search for boards

connect to information from assembly by uploading CSV files on website

A bigger context ...

- Figh channel count = a challenge on all levels
 - Production, test, calibration, software, management
 - 2'000 boards to be produced at DESY
 - Each step requires high degree of automation

future detectors
will only be possible
through a new level
of automation!

x10

CMS HGCAL

2 endcaps 240'000 SiPMs

prototype

22'000 SiPMs

CLD/ILD HCAL

barrel only 4'000'000 SiPMs

Summary

- The CMS high granularity calorimeter (HGCAL) for HL LHC
 - Silicon & SiPM-on-tile modules
 - 2'000 SiPM-on-tile modules
 (150/month) to be produced at DESY
- Automatic quality control
 - Developed framework to cope with complex QC workflow (smoke test, data-handling, analysis, calibration)
 - Can be operated by non experts
 - First 36 boards QC'ed by today!!!
- Tileboard/module tracking
 - Based on Oracle APEX

Backup

Tileboard form factors

here without tiles; naked SiPMs visible

Overview: DAQ & trigger data flow

- Shared readout chain between silicon and SiPM-on-tile modules
- Trigger links continuously readout at 40MHz
- DAQ links read only on positive trigger decision (~750kHz)
- = eLinks operate at 1.28 Gb/s; optical links at 10.24 Gb/s; 100 Gb/s data-to-surface links (120x)

FPGA-based DAQ

- AMD KRIA SOM (4 core Cortex-A53; Zynq UltraScale+ FPGA)
- Custom carrier board developed for HGCAL

Silicon modules

Hexagonal shape to maximize wafer usage

Two major layouts to equalize occupancy

 $^-$ High-density (HD): 432 channels $0.5\,\mathrm{cm^2/pad}$; 6 HGCROC readout chips

Low-density (LD): 192 channels $1.2\,\mathrm{cm^2/pad}$; 3 HGCROC readout chips

9 partial layouts for edges

Complex 6-fold rotational geometry

