Study of polarization fractions in same-sign W boson scattering at $\sqrt{s}=13\, {\it TeV}$ with the ATLAS detector

Introduction: Electroweak-induced same-sign WWjj production

Vector boson scattering (VBS) $V_1V_2 \rightarrow V_3V_4$ process in $W^{\pm}W^{\pm}jj$ final states:

- Rare process: low cross-section even at energy scales achieved by the LHC
- W[±]W[±]jj characterized by large EWK-to-QCD production mode ratio
- The Higgs mechanism generates gauge boson masses and their longitudinal polarization
- In $V_L V_L \rightarrow V_L V_L$, unitarity is violated without Higgs interaction \implies indirect test of electroweak symmetry breaking mechanism
- Allows test of anomalous quartic gauge couplings (aQGCs)
- Probes deviations from the SM: additional Higgs, new couplings, new resonances

A. Denner T. Hahn, Nucl.Phys.B525:27-50,1998

VVjj production with $V = W, Z, \gamma$ at Leading Order

 $W^{\pm}W^{\pm}jj$ has the largest EWK-to-QCD production cross-section ratio amongst all the VBS sensitive VVjj final states • supressed diagrams in $W^{\pm}W^{\pm}jj$ crossed with red line

Prasham Jain (DESY/UniFreiburg)

Same-sign WW: Polarization Studies

April 22, 202

Same-sign WW process: Event Signature

Event Signature: 2 same-sign leptons + E_T^{miss} + 2 forward jets

- VBS $W^{\pm}W^{\pm}jj$ event topology:
 - 2 incoming quarks
 - 2 tagging jets (*j*) in the forward regions with large rapidity gap (Δy)
 - 2 outgoing leptons (ℓ) and neutrinos (ν) which come from W boson decays
 - Ws lie in the central region
 - No additional jet in the gap region

Measurement of *L*-polarized $W^{\pm}W^{\pm}jj$ production:

- Polarization is not Lorentz invariant \implies reference frame must be chosen
- *W* polarization defined in following reference frames:
 - parton-parton center-of-mass (*pCoM*)
 - diboson or WW center-of-mass (WWCoM)

Polarization of gauge boson affects the kinematic & angular distributions of decay products

• Used in MC Validation

W boson only couples to left-handed particles and right-handed anti-particles

- (*W*_L, *h*=0) ℓ^+ escapes $\perp W^+$ direction
- ($W_{T,R}$, h=+1) ℓ^+ escapes $\parallel W^+$ direction

• ($W_{T,L}$, *h*=-1) ℓ^+ escapes anti-parallel to W^+ direction

- *ssWW* EWK MC samples generated using Madgraph ($pp \rightarrow W_X W_Y jj, W \rightarrow \ell \nu$)
 - Wrong polarization assignment for final states with au leptons
- $\cos \theta$ plots of mixed pol. samples show pol. preference in τ channels
 - $W_L W_T$ sample prefers $W_T \rightarrow \tau \nu$
 - $W_T W_L$ sample prefers $W_L
 ightarrow au
 u$
- Contacted MG5 developers [Launchpad Ticket]
 - Received 2 possible solutions: (1) Syntax change (implemented), (2) Patch
- Generated $W_L W_T$, $W_T W_L$ samples with suggested syntax correction
 - Old syntax (l=e,mu,tau)

```
generate p p > w+{X} w+{Y} j j QED=4 QCD=0, w+ > 1+ v1 @1
add process p p > w-{X} w-{Y} j j QED=4 QCD=0, w- > 1- v1~ @1
```

New syntax (l=e,mu)

```
generate p > u+(0) u+(T) j qED=4 qCD=0, u+ > 1+ v1 01
add process p > u+(0) u+(T) j qED=4 qCD=0, u+ > 1+ v1, u+ > ta+ v1 01
add process p p > u+(0) u+(T) j qED=4 qCD=0, u+ > ta+ v1, u+ > 1+ v1 02
add process p p > u+(0) u+(T) j qED=4 qCD=0, u+ > ta+ v1 01
add process <math>p p > u+(0) u+(T) j qED=4 qCD=0, u+ > ta+ v1 01
add process <math>p p > u+(0) u+(T) j qED=4 qCD=0, u- > 1- v1^- 01
add process p p > u-(0) u-(T) j qED=4 qCD=0, u- > 1- v1^- 01
add process <math>p p > u-(0) u-(T) j j qED=4 qCD=0, u- > ta- v1^-, u- > ta- v1^- 01
add process <math>p p > u-(0) u-(T) j j qED=4 qCD=0, u- > ta- v1^-, u- > 1- v1^- 02
add process <math>p p > u-(0) u-(T) j j qED=4 qCD=0, u- > ta- v1^- 01 - 1- v1^- 02
```

Note: $W_0 = W_L$

(a) Before Fix

(b) After Fix

Event Selections

2 same-sign leptons $p_T^\ell > 27 \text{ GeV}$ Veto if > 3 lepton $m_{\ell\ell} > 20 GeV$ $|m_{\ell\ell} - m_Z| > 15 \text{ GeV}$ $n_{\rm jets} \geq 2$ $p_{\tau}^{j1(j2)} > 65(35) \, \text{GeV}$ $E_{\tau}^{\rm miss} > 30 \, {\rm GeV}$ $n_{\rm bjets} = 0$ $|\Delta y_{ii}| > 2$ $m_{ii} \geq 500 \, \mathrm{GeV}$

VBS enhancing selections

Current ATLAS result:

EWK ssWW cross section measurement using full Run 2 data

Same-sign WW process: Backgrounds

 $W^{\pm}Zjj$ background $(W^{\pm}Zjj \rightarrow \ell^{\pm}\nu\ell^{\pm}\ell^{\mp}jj)$

- Dominant background, ℓ^{\mp} (from Z decay) out of detector acceptance or not identified
- Estimation \rightarrow Sherpa 2.2.2 MC with data-driven *Mjj* shape correction

Non-prompt background

- Non-prompt/fake lepton: Any object, which is not a prompt lepton, reconstructed as a lepton in the detector
 - Main sources: W+jets and $t\bar{t}$ events
- $\bullet~$ Estimation \rightarrow data-driven techniques: fake factor method

Charge flip/misidentification background

- e charge misidentification because of incorrect track curvature measurements or wrong e-reconstruction
 - Main sources: high p_T tracks, $e^\pm o e^\pm \gamma o e^\pm e^+ e^-$
- Estimation \rightarrow data-driven method

Photon conversion background $(V\gamma jj)$

- e channel contributions through γ conversions
- Estimation ightarrow Sherpa 2.2.11 $V\gamma$ MC

Various kinematic and angular distributions studied to separate LL pol. modes

• Important variables include invariant masses, p_T , $\Delta \phi$, ΔR , etc. of final state particles

(Complete list of distributions in backup slides)

Deep Neural Network trained to separate *LL*-polarization modes

Statistics	Label	Class	No. of e	vents (SR) <i>WW</i> CoM
	1	Signal	│ ~ 20k	\sim 22k
	0	Background	\sim 250k	\sim 250k

Signal LL pol. $(W_l^{\pm} W_l^{\pm})$

Background TL, TT pol., ss WW QCD, ss WW INT, WZ QCD, WZ EW6, ZZ, V/γ , charge Flip, triboson, ttX, Fakes (*W*+jets, $t\overline{t}$ semi-leptonic)

Input Variables m_T^{WW} , $m_{\ell\ell}$, $\Delta \phi_{jj}$, $\Delta \phi_{\ell\ell}$, $\Delta \phi_{\ell\ell-E_T^{\rm miss}}$, $p_T^{\ell_1}$, $p_T^{\ell_2}$, $p_T^{j_1}$, $p_T^{j_2}$, $p_T^{\ell_1}$, $p_T^{\ell_$ $z_{\ell_2}^*, \Delta R_{i_1-\ell_1} \Delta R_{i_2-\ell_1}$

Preprocessing Scaled to MC event weights & standardized normally distributed data

Distribution with zero mean and unit variance

Scaling Datasets are balanced to avoid bias: scale factor $(Sig) = \sigma(Bkg)/\sigma(Sig)$ Dataset Split (Training, Testing, Validation) = (60, 20, 20) in %

Avoiding Overtraining Dropout layers, Early stopping, Model checkpoint

Permutation Feature Importance algorithm:

- Ranks input features of a NN
- Removes highly correlated input variables
- Benefit: Retraining of NN is not needed
- NN evaluated on permuted sets of input features

Method:

- ∀ input features, modified input dataset is created
- Values for this feature (say j) are swapped with each other over the whole dataset
 - It breaks the association of *j* value to a particular input observable
 - Also breaks *j* value's correlations to other input observables

- Algorithm's inputs: trained model *f*, input dataset *X*, figure-of-merit *L*
- Performance measures: $e^{\text{orig}} = L(f(X)), e_j^{\text{perm}} = L(f(X_j^{\text{perm}}))$
- Feature Importance: $FI_j = \frac{e_j^{\text{perm}}}{e_j^{\text{orig}}}$

DNN Classification Performance

- Predictions made on Sig & Bkgs using trained DNN model
- ROC curve gives an estimation of the algorithm accuracy
- DNN output score shows a good separation of Sig and individual Bkgs

0.4

Sig (LL)

ch Rip

Voamm

8.0

0.2

0.8

DNN Classifier Output

0.6

1.0

Extracting $W_L W_L$ polarization fraction

 0.0640 ± 0.0007

 χ^2 fit for $W_l W_l$ polarization fraction (Signal Region):

In SM MC, $c_{II} = 1$.

*Systematics not yet included.

Theory prediction

 0.0987 ± 0.0011

Single boson polarzation $(W_L^{\pm}W^{\pm}jj)$:

- Observed (Expected) significance: 3.3(4.0)
- Measured cross-section: 0.88 \pm 0.30 fb (in agreement with SM prediction)
- Dominated by statistical uncertainty
- First evidence for longitudinal polarization in VBS

Double boson polarization ($W_L^{\pm}W_L^{\pm}jj$):

- Observed (Expected) 95% CL upper limit of 0.45(0.70) fb
- Measured cross-section in agreement with the Standard Model
- Dominated by statistical uncertainty
- **Most stringent limit** for $W_L^{\pm}W_L^{\pm}jj$ to date

Summary

Electroweak polarized *ssWWjj* production:

- Golden channel for VBS
- Polarization studies help in SM validation and BSM searches
- Sensitive to polarization-affecting new physics effects and others like aQGCs

Classification of $W_L W_L$ polarization modes:

- Deep Neural Network constructed to classify $W_L W_L$ vs Bkgs
- $W_L W_L$ polarization fraction (f_{LL}):

Degult	f _{LL}			
Result	<i>p</i> CoM	<i>WW</i> CoM		
DNN	$0.06\substack{+0.05\\-0.06}$	$0.09^{+0.06}_{-0.06}$		
Theory prediction	0.0640 ± 0.0007	0.0987 ± 0.0011		

• Current work in progress:

- Navigating through NAF
- Update the results with new DNN
- Including systematics in the fit
- Training LX vs Bkgs DNN classifier (tentatively)

Thank you!

Prasham	Jain	(DESY/U	JniFreiburg)	
---------	------	---------	--------------	--

Backup slides

MadGraph commands for MC generation:

```
generate p p > w+{X} w+{Y} j j QED=4 QCD=0, w+ > l+ vl @1
add process p p > w+{X} w+{Y} j j QED=4 QCD=0, w+ > l+ vl, w+ > ta+ vl @1
add process p p > w+{X} w+{Y} j j QED=4 QCD=0, w+ > ta+ vl, w+ > l+ vl @2
add process p p > w+{X} w+{Y} j j QED=4 QCD=0, w+ > ta+ vl @1
add process p p > w+{X} w+{Y} j j QED=4 QCD=0, w+ > ta+ vl @1
add process p p > w-{X} w-{Y} j j QED=4 QCD=0, w- > l- vl~ @1
add process p p > w-{X} w-{Y} j j QED=4 QCD=0, w- > ta- vl~ @1
add process p p > w-{X} w-{Y} j j QED=4 QCD=0, w- > ta- vl~ @2
add process p p > w-{X} w-{Y} j j QED=4 QCD=0, w- > ta- vl~ @2
```

 \implies using explicit τ decays

э.

Total events = 100,000 each

Final States (+jj)	BW cutoff		Cross-se <i>p</i> CoM	ction (fb) <i>WW</i> CoM
ℓνℓν WW	1000 15		35 31.01	.17 ± 0.16
$W_L W_L \\ W_T W_L \\ W_T W_T$	15 15 15	1 1	$\begin{array}{c} 1.97 \pm 0.01 \\ 0.78 \pm 0.06 \\ 8.06 \pm 0.10 \end{array}$	$\begin{array}{c} 2.89 \pm 0.02 \\ 9.41 \pm 0.05 \\ 18.49 \pm 0.10 \end{array}$
Sum of pol. xsec		3	80.80 ± 0.12	30.79 ± 0.11

 $\cos\theta$ validation fit:

- Polar angle θ = angle between the flight direction of one of the Ws (rest frame in which sample is generated) and the lepton ℓ it decays into (W's rest frame)
- Opposite flavor leptons, W decaying to lightest ℓ selected
- W, ℓ boosted from lab frame into the rest frame in which sample is generated
- ℓ further boosted to its *W*'s rest frame

Comparison of new and old $\cos \theta$ plots: Lepton channels

Prasham Jain (DESY/UniFreiburg)

Same-sign WW: Polarization Studies

April 22, 2025

22/17

Normalized, pCoM

Normalized, pCoM

Normalized, WWCoM

Normalized, WWCoM

Prasham Jain (DESY/UniFreiburg)

$$m_{T}^{WW} = \sqrt{\left(\sum_{i} E_{i}\right)^{2} + \left(\sum_{i} \rho_{z,i}\right)^{2}}$$
(1)
$$z_{\ell_{1}}^{*} = \left|\frac{\eta_{\ell_{1}} - 0.5 \cdot (\eta_{j_{1}} + \eta_{j_{2}})}{\Delta \eta_{jj}}\right|$$
(2)

Hyperparameters: configurations and settings that determine the DNN architecture & training behaviour

Hyperparameter	Optimization Range	Sampling
No. of Hidden layers	[1, 10]	In steps of 1
Dropout layers	True/False	Optionally inserted after every hidden layer
Dropout Rate	[0.0, 0.4]	In steps of 0.01
No. of Units per layer	[16, 32, 64, 128, 256, 512]	In exponents of 2
Learning Rate (Adam)	$[10^{-2}, 10^{-5}]$	Logarithmic
Batch Size	[16, 32, 64, 128, 256]	In exponents of 2

- Values are optimized such that the validation loss is minimized
- Improves the precision and accuracy of model
- Some values are set by manual tuning, and the rest using Optuna
- Chronology for DNN Optimization: Hyperparameter Optimization 1 \rightarrow Input Feature Reduction \rightarrow Hyperparameter Optimization 2

• □ • • □ • • □ • • □ •

Permutation Feature Importance algorithm:

- Ranks input features of a NN
- Removes highly correlated input variables
- Benefit: Retraining of NN is not needed
- NN evaluated on permuted sets of input features

Method:

- \forall input features, modified input dataset is created
- Values for this feature (say j) are swapped with each other over the whole dataset
 - No new values created
 - It breaks the association of *j* value to a particular input observable
 - Also breaks j value's correlations to other input observables

- Algorithm's inputs:
 - trained model f
 - Input dataset X
 - figure-of-merit L
- Original performance measure: $e^{\text{orig}} = L(f(X))$
- Permuted performance measure: $e_j^{\text{perm}} = L(f(X_j^{\text{perm}}))$

• Model Reliance/Feature Importance: $FI_j = rac{e_j^{
m perm}}{e_j^{
m orig}}$ or $e_j^{
m perm} - e_j^{
m orig}$

- $FI = 1 \implies$ no reliance on X_1
- $FI = 2 \implies$ loss doubles when X_1 is scrambled, heavy reliance on X_1
- $\mathit{FI} < 1 \implies$ rely less on X_1 than a random guess, difficult to interpret

Error estimation on *FI*:

- Shuffling of X performed 10 times
 - Mean, std dev $ightarrow Fl_j, \Delta Fl_j$

Model:

- 5 hidden layers: random normal init., ReLU activation
- 2 dropout layers (40%) to reduce overtraining
- 1 sigmoid output layer with random uniform activation Compilation:
 - Adam Optimizer with learning rate = 0.001
 - Loss = binary crossentropy
 - Metrics = Accuracy

Model Fit:

- Batch Size = 1000
- Epochs ightarrow stops if val. loss doesn't improve for 5 epochs

nEvts and Sum of Weights

Process	No. of Evts	Sum of Weights
LL (pCoM)	19673	12.9161
LL (WWCoM)	21643	20.6243
XT (pCoM)	67791	140.759 (TT) + 76.8323 (LT)
XT (WWCoM)	68658	142.854 (TT) + 67.2892 (LT)
Diboson: WZ QCD	27800	82.753
Diboson: WZ EW	2515	4.0837
Diboson: ZZ	2880	2.50948
ssWW QCD	25006	22.9733
ssWW INT	114209	48.3424
Fakes: W+jets	151	71.0203
Fakes: $t \overline{t}$ non all hadronic	133	16.933
chFlip	8231	10.0955
${\sf V}\!/\gamma$	614	12.5289
ttX	2168	4.03342
triboson	308	0.649666
Bkg (pCoM)	251806	493.513966
Bkg (WWCoM)	252673	486.065866

∃ ⊳

Case 1: Scale bkgEvts

Case 2: Scale bkgSumW

DNN Discriminant for Classification

pCoM, WWCoM

