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293 detections!
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Modern detectors

What about these frequencies?
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Servant, G., & Simakachorn, P. (2024). Ultrahigh frequency primordial gravitational waves beyond the kHz: The case of cosmic strings. Physical Review D, 109(10), 103538.

 No known coherent sources (Q-balls, boson stars, oscillatons, oscillons, gravastars, 
fermion–boson stars, anisotropic stars, gravitino stars, dark quark stars, etc) 
 Expected stochastic background Many dedicated detectors

But modern GW detectors are already as sensitive 
at high frequencies!



Mikhail Korobko 14

Outline

1. Introduction to GW detection 
2. Status of current GW detectors 
3. Into the deep: how GWDs really work 
4. Response of the detectors to high-frequency GWs 
5. Challenges & perspectives



Mikhail Korobko 15

Outline

1. Introduction to GW detection 
2. Status of current GW detectors 
3. Into the deep: how GWDs really work 
4. Response of the detectors to high-frequency GWs 
5. Challenges & perspectives



Detecting weak forcesIntroduction

Mikhail Korobko

No Signal

16



Detecting weak forcesIntroduction

Mikhail Korobko

GW strain = ∆Length/Length

17



Cavity-enhanced detectorIntroduction

Mikhail Korobko

Advanced LIGO

GW signal = (cavity gain)2 ∆Length/Length

18



Cavity-enhanced detectorIntroduction

Mikhail Korobko

Advanced LIGO

GW signal = (cavity gain)2 ∆Length/Length

19



Cavity-enhanced detectorIntroduction

Mikhail Korobko 20



Cavity-enhanced detectorIntroduction

Mikhail Korobko

Amplify the light power & signal

21



Cavity-enhanced detectorIntroduction

Mikhail Korobko

Increase the bandwidth

Amplify the light power & signal

22



Cavity-enhanced detectorIntroduction

Mikhail Korobko

Amplify the the signal

Amplify the light power & signal

23



Mikhail Korobko 24

Outline

1. Introduction to GW detection 
2. Status of current GW detectors 
3. Into the deep: how GWDs really work 
4. Response of the detectors to high-frequency GWs 
5. Challenges & perspectives



Mikhail Korobko 25

Detector networkStatus of the detectors
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doi:10.1007/lrr-2016-1Chatterji, S. et. al., PRD, 74, 082005 (2006)  

Detector networkStatus of the detectors
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Having 3 detectors is crucial for good localisation: 
 best O4a (Virgo off) is 80deg2   

 best O4b (Virgo on) is 5deg2  

Detector networkStatus of the detectors



Mikhail Korobko 30

Status of the detectors

https://observing.docs.ligo.org/plan/

Observation plan
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The key component is public alerts & live information on parameters

This enables EM follow-up, immediate science response  
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The key component is public alerts & live information on parameters

This enables EM follow-up, immediate science response  
                (and it’s fun and engaging!)

←New

https://emfollow.docs.ligo.org/userguide/analysis/index.html
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The key component is public alerts & live information on parameters

This enables EM follow-up, immediate science response  
                (and it’s fun and engaging!)

https://gracedb.ligo.org

Status of the detectors Public science



Mikhail Korobko 36

The key component is public alerts & live information on parameters

This enables EM follow-up, immediate science response  
                (and it’s fun and engaging!)

https://emfollow.docs.ligo.org/

Status of the detectors Public science



Mikhail Korobko 37

Status of the detectors Future
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Status of the detectors

https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=75529

https://alog.ligo-wa.caltech.edu/aLOG/index.php?callRep=75654

https://alog.ligo-wa.caltech.edu/  
aLOG/index.php?callRep=81258

https://www.ligo.caltech.edu

https://www.ligo.caltech.edu

https://alog.ligo-wa.caltech.edu/
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Optical cavity

gwoptics.org
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For low-frequency GWs,  
wavelength is ≫ arm length 

For high-frequency GWs, 
the response changes: 
if the half wave fits 
exactly into the arm length

No response at high frequency!

GW wavelength

FSR

Common misconception 
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Two polarisations

Antennae pattern
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auger.org
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x-arm senses no signal 
y-arm does sense 
signal, since effective 
arm length is shorter! 

First FSR
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Optimal orientation 

FSRs
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A well-known (in narrow circles) effect, e.g.

Our methodological paper (arXiv: 2409.03019)
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1st FSR

Antenna pattern
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5th FSR

Antenna patternHF GWs
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100th FSR

Antenna patternHF GWs
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100th FSR

Antenna patternHF GWs
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100th FSR

Need to compute sky-averaged response

Antenna patternHF GWs
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Best sensitivity

Sensitivity combHF GWs
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Small-scale experiments

Modern detectorsHF GWs
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General sensitivityHF GWs
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(approximate) scaling of the sensitivity w/o integration

General sensitivityHF GWs
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(approximate) scaling of the sensitivity w/o integration
with years of averaging, can be substantially lower

General sensitivityHF GWs
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Modern detectors are already sensitive to GWs up to a GHz

Why don’t we detect them?

1. Fast electronics: currently limited to ~kHz range 
→ not an issue, we know how to build GHz electronics 

2. Fast control: needs technical solutions, especially for  
noise couplings, such as laser frequency noise or  
mirror thermal modes → we know what to do 

3. Absolute calibration: we need to know conversion between 
signal at the PD & GW strain → current approaches are 
not applicable, needs new solutions

Need a convincing argument to invest time/resources into this

Challenges
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Another approach to detecting HF GWs: memory effects

 Passing high-frequency GWs leave a permanent distortion  
to the space-time, extending towards much lower frequency  

 Two types of effects: linear (DC shift)  
                              and non-linear (GWs emitting GWSs) 

 These signals are detectable even below kHz, but also at higher  
FSRs
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