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Status of the detectors Detector network
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Status of the detectors Observation plan
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The key component is public alerts & live information on parameters

This enables EM follow-up, immediate science response
land it's tun and engaging)
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Status of the detectors
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Public science

The key component is public alerts & live information on parameters
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Status of the detectors Public science
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The key component is public alerts & live information on parameters

This enables EM follow-up, immediate science response
land it's tun and engagingl)
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Welcome to the LIGO/Virgo/KAGRA Public Alerts User Guide! This document is intended for both
professional astronomers and science enthusiasts who are interested in receiving alerts and
real-time data products related to gravitational-wave (GW) events.
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Status of the detectors
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GW response Optical cavity
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GW response Optical cavity
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GW response GW wavelength
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GWV response
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GW wavelength
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GW response GW wavelength
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GW response GW wavelength
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GW response GW wavelength
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GW response GW wavelength
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Anfennae pattern
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Anfenna pattern
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Anfenna pattern

GWV response
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Anfenna pattern
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GWV response O Antenna pattern
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GW response First FSR
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GW response First FSR

> Xx-arm senses no signal
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GWV response First FSR

> x-arm senses no signal

> y-arm does sense
signal, since effective
arm length is shorter!
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GWV response First FSR
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GWV response First FSR
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GWV response O

A well-known (in narrow circles) eftect, e.g.
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GWV response O

A well-known (in narrow circles) eftect, e.g.

Our methodological paper (arXiv: 2409.03019)

Optical sensitivities of current gravitational wave observatories
at higher kHz, MHz and GHz frequencies
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Outline

4. Response of the detectors to high-trequency GWs
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HF GWs Antenna pattern
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HF GWs Antenna pattern
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Anfenna pattern
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HF GWs

Anfenna pattern
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HF GWs Antenna pattern
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HF GWs O Sensitivity comb
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HF GWs Sensitivity comb

10—16 . 10_195‘

AdvlIGO s}
— %10-21 !
10—18_ \%10—22 (
1023 =
- . 0 o 10 10°
\ﬁ 10-20L " f Hz )
//{
107221 g
1 -24 . | . | . | ,
: 104 108 108 101° 102

f, Hz

Mikhail Korobko 71




HF GWs O Sensitivity comb
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HF GWs Sensitivity comb

10 - . . - .
AdvlIGO
10 g
E
@ (e 5
=22 _
e bl N Additional resonance
~ due to singalrecycling cavity -
-24 . | . | . | !
b 10* 10° 108 1070 1012

f, Hz

Mikhail Korobko 73




HF GWs O Sensitivity comb
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HF GWs O Modern detectors
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HF GWs O Modern detectors
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HF GVWs General sensitivity
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HF GVWs General sensitivity

O

lapproximate) scaling of the sensitivity w/o infegration
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HF GVWs General sensitivity

O

lapproximate) scaling of the sensitivity w/o infegration

with years of averaging, can be substantially lower
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Outline

5. Challenges & perspectives
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Challenges O

Modern detectors are already sensitive to GWs up to a GHz
VWhy don't we defect them?
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Challenges O

Modern detectors are already sensitive to GWs up to a GHz
VWhy don't we defect them?

|. Fast electronics: currently limited to ~kHz range
— not an issue, we know how to build GHz electronics

2. needs technical solutions, especially for
noise couplings, such as laser frequency noise or
mirror thermal modes = we know what fo do

3. Absolute calibrafion: we need to know conversion between
signal at the PD & GWV strain = current approaches are
not applicable, needs new solutions

Need a convincing argument to invest time/resources into this
Mikhail Korobko e
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Conclusions
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Conclusions

O
1. Modern GW detectors are developing fast!

2. They are sensitive to high-requency GWs
— but we need to adapt them for that

— also can use memory effects 0]
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GW memory O

Another approach to detecting HF GWs: memory eftects
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GW memory O

Another approach to detecting HF GWs: memory eftects

> Passing high-requency GWs leave a permanent distortion
to the spacetime, extending towards much lower frequency

> Two types of effects: linear (DC shif
and non-linear (GWs emitting GVVSs|

> These signals are detectable even below kHz, but also at higher

FSRs
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