MC Generators for Future Colliders in key4HEP

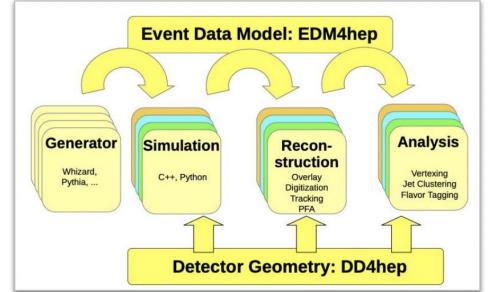
Dirk Zerwas (DMLab) Future Colliders Meeting July 11, 2025

work done with Alan Price (Cracovie)

- Introduction
- Setting up
- Comparing
- Summary/Outlook

Introduction

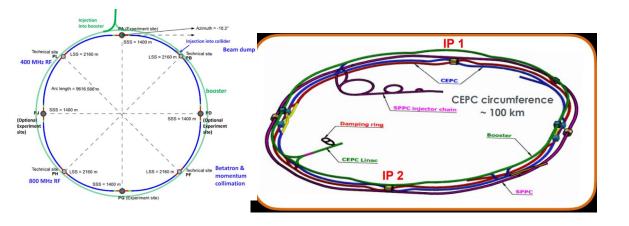
2020: ECFA recognizes the need for the experimental and theoretical communities involved in physics studies, experiment designs and detector technologies at **future Higgs** *(added top and EW)* **factories** to gather. ECFA supports **a series of workshops** with the aim to share challenges and expertise, to **explore synergies in their efforts** and to respond coherently to this priority in the European Strategy for Particle Physics (ESPP).


WG2: Physics Analysis Tools

- Patrizia Azzi
- Fulvio Piccinini
- Dirk Zerwas

key4HEP Ecosystem (Thomas, Frank et al):

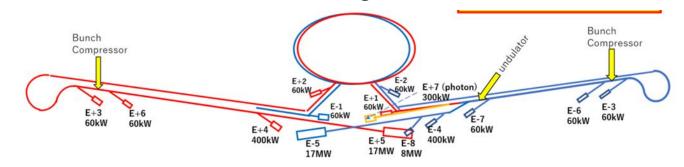
- EDM4HEP
- Geometry DD4HEP
- Gaudi
- DIRAC
- ILCSOFT
- FCC
- CEPCSW
- ACTS....


Adopted by ECFA(well...), CEPC, C^3, FCC, ILC :

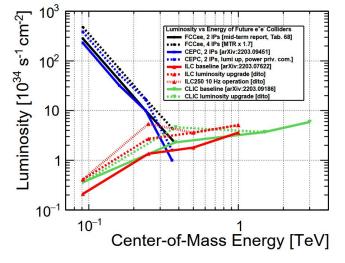
- Interoperability of algorithms
- comparisons and improvements

Circular:

- 90km (FCC), 100km (CEPC)
- $\sqrt{s=90-365GeV}$
- Tera-Z


Parameter	Z	ww	H (ZH)	ttbar
beam energy [GeV]	45.6	80	120	182.5
beam current [mA]	1270	137	26.7	4.9
number bunches/beam	11200	1780	440	60
bunch intensity [10 ¹¹]	2.14	1.45	1.15	1.55
SR energy loss / turn [GeV]	0.0394	0.374	1.89	10.4
total RF voltage 400/800 MHz [GV]	0.120/0	1.0/0	2.1/0	2.1/9.4
long. damping time [turns]	1158	215	64	18
horizontal beta* [m]	0.11	0.2	0.24	1.0
vertical beta* [mm]	0.7	1.0	1.0	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.71	1.59
vertical geom. emittance [pm]	1.9	2.2	1.4	1.6
vertical rms IP spot size [nm]	36	47	40	51
beam-beam parameter x _x / x _y	0.002/0.0973	0.013/0.128	0.010/0.088	0.073/0.134
rms bunch length with SR / BS [mm]	5.6 / 15.5	3.5 / 5.4	3.4 / 4.7	1.8 / 2.2
luminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	140	20	≥5.0	1.25
total integrated luminosity / IP / year [ab ⁻¹ /yr]	17	2.4	0.6	0.15
beam lifetime rad Bhabha + BS [min]	15	12	12	11

Machines


Linear

- 27 km
- $\sqrt{s=90-550GeV}$, 1.5TeV
- Giga-Z

Whatever CERN Council decides::

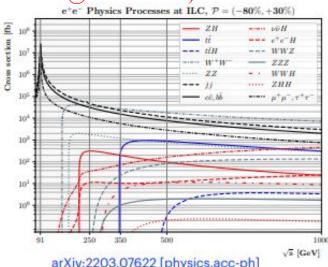
- 2nd gen Attobarn machines
- \sqrt{s} is \sqrt{s} (to first order)

Quantity	Symbol	Unit	Initial	\mathcal{L} Upgrade
Centre of mass energy	\sqrt{s}	GeV	250	250
Luminosity	$L = 10^{34}$	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$	1.35	2.7
Polarization for e^{-}/e^{+}	$P_{-}(P_{+})$	%	80(30)	80(30)
Repetition frequency	$f_{ m rep}$	Hz	5	5
Bunches per pulse	n_{bunch}	1	1312	2625
Bunch population	$N_{ m e}$	10^{10}	2	2
Linac bunch interval	$\Delta t_{ m b}$	ns	554	366
Beam current in pulse	$I_{\rm pulse}$	$\mathbf{m}\mathbf{A}$	5.8	8.8
Beam pulse duration	$t_{\rm pulse}$	μs	727	961
Average beam power	$P_{\rm ave}$	MW	5.3	10.5
RMS bunch length	$\sigma_{\rm z}^*$	mm	0.3	0.3
Norm. hor. emitt. at IP	$\gamma \epsilon_{\rm x}$	μm	5	5
Norm. vert. emitt. at IP	$\gamma \epsilon_{\rm y}$	nm	35	35
RMS hor. beam size at IP	σ^*_{x}	nm	516	516
RMS vert. beam size at IP	$\sigma_{\rm v}^*$	\mathbf{nm}	7.7	7.7
Luminosity in top 1%	$\mathcal{L}_{0.01}/\mathcal{L}$		73%	73%
Beamstrahlung energy loss	δ_{BS}		2.6%	2.6%
Site AC power	P_{site}	MW	111	128
Site length	$L_{ m site}$	\mathbf{km}	20.5	20.5

Generators

LEP era generators:

- Pythia
- Herwig
- KKMC (2 fermions)
- Babayaga, BHLUMI (specialized)

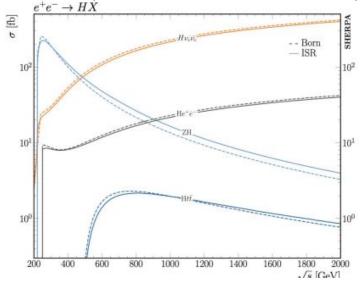

LHC era generators (automation):

- Madgraph
- Sherpa

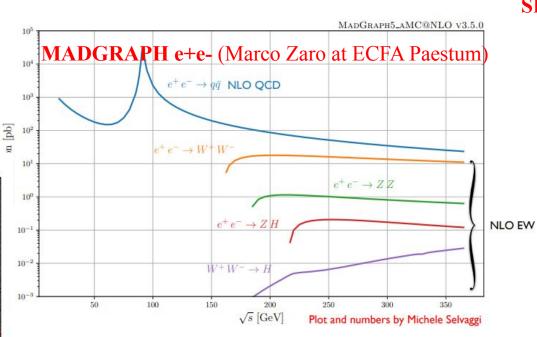
Modern e+e- era generators:

- Whizard
- CIRCE (specialized)

Whizard e+e- (Juergen Reuter@LCWS2024)


QED:

- ePDF, QED Parton Shower and Yennie-Frautchi-Suura resummation
- Some generators use ePDF (thought we got rid of this, but no....)


Beamstrahlung:

- high density of bunches leads to strong fields
- machine dependent (Guinea Pig)
- Input to Generators (MADGRAPH, CIRCE+Whizard)

SHERPA e+e- (Daniel Reichelt at ECFA Paris)

All is good....individually....standalone

Generators: Configuration

Attobarn data with N^nLO under control:

- many generators claim the same precision (differing approaches)
- needs high precision in generation
- first step: cross section
- second step: differential distributions
- Technical Benchmarks

k4GeneratorsConfig in key4HEP:

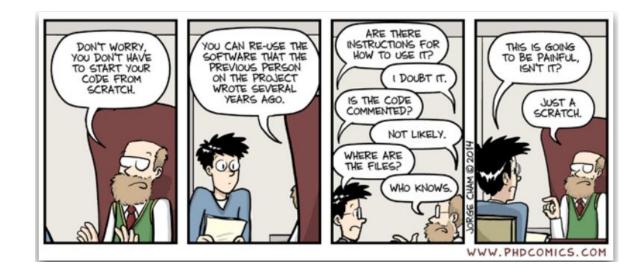
- define process
- define generators
- generates datacards for the generators
 o dynamic and template based
- generates event generation script in key4HEP environment (run anywhere, well.....)

In practice:

- python
- dynamic loading of generators by name
- OO usage 2+1 levels deep

- Whizard
- Madgraph
 KKMC
- Pythia

OutputFormat: hepmc3 OutDir: Run-Cards Events: 10000 EventMode: unweighted


SqrtS: 91.2 Model: SM ISRMode: 0

Processes: Muon: Final: [13, -13] Order: [2,0]

Tau: Final: [15, -15] Order: [2,0]

Sherpa: Run: EW_SCHEME: 3

ParticleData: 23: mass: 91.1876 width: 2.4952

behind the scenes:

- converter HEPMC/LHE to EDM4HEP
- Pythia main with PhaseSpace cuts
- MADGRAPH LHE to HepMC via Pythia (turned out to be useful for others...)

Generators: EDM

edm4HEP:

- provided by key4HEP
- contains MCTruth, Simulation and Reconstruction
- convince ALL MC groups to write edm4HEP unlikely
- provide a converter compatible with HepMC Writers

HepMC:

- Problem with LHE reader
- color flows, but iflow1, iflow2 seem to persist
- best effort standard, not a standard (2 versus 3)
- quick reaction/update by HepMC team

HepMC to edm4HEP:

- aim for lossless conversion
- key4HEP provides flexible structures
 - but not sustainable
- quick reaction/update of MC EDM by key4HEP team

HepMC and edm4HEP

- meta data
- philosophical differences:
 - provide detailed MCTruth/provide order-safe MCTruth
 - LHC inspired/e+e- inspired: $\sqrt{s...}$
- useful discussions between key4HEP (Thomas, Frank) and HepMC (Andy and Chris) teams

Generators: Technical Features

Goal:

- detect
- correct
- follow up

key4HEP

- Whizard in key4HEP works on CENTOS, ALMA, UBUNTU
- Whizard does not work on ALMA in CI
- traced to incomplete setup on all OS but UBUNTU
- bugfix (SPACK) provided by Thomas

KKMC:

- cross section not provided
- will be provided in the next version (imminent since 2024, but now it really is)

Babayaga

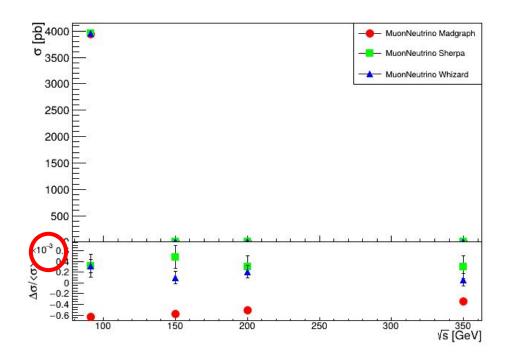
- cross section not provided
- update by author, included in key4HEP and tested (solved)

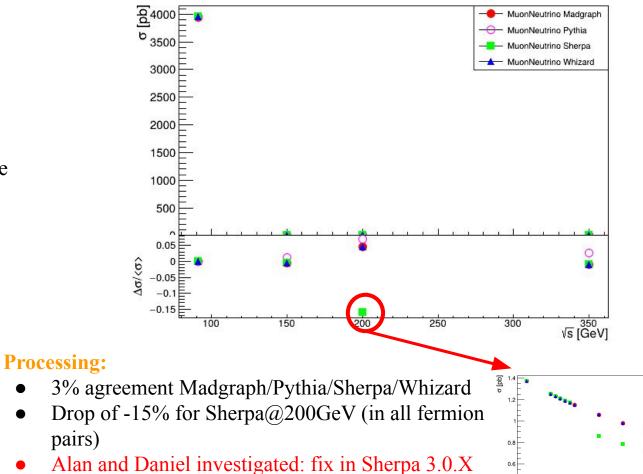
The MODEL:

• SUPER-SPLIT SUPERSYMMETRY <u>arXiv</u> <u>hep-th/0503249</u> Fox et al

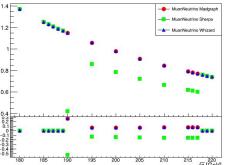
MADGRAPH:

- $\sigma(ddbar) > \sigma(bbar)$
- LHC inspired implicit pT cut (bQuark)
- reset all cuts
- update of MADGRAPH setup in key4HEP

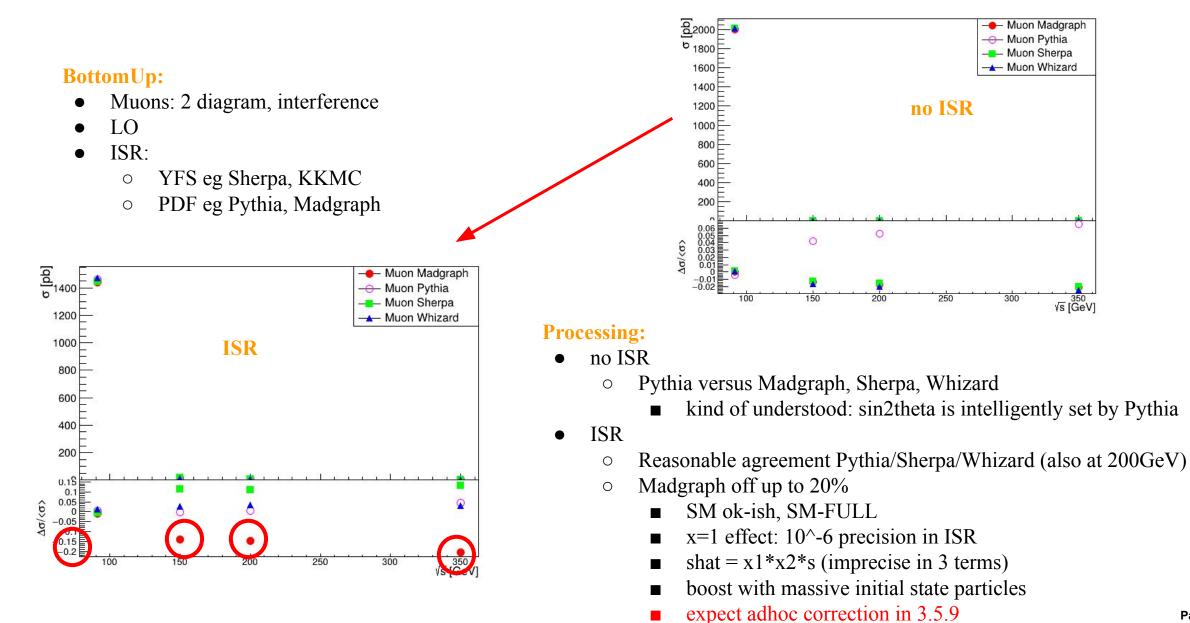

k4GeneratorsConfig

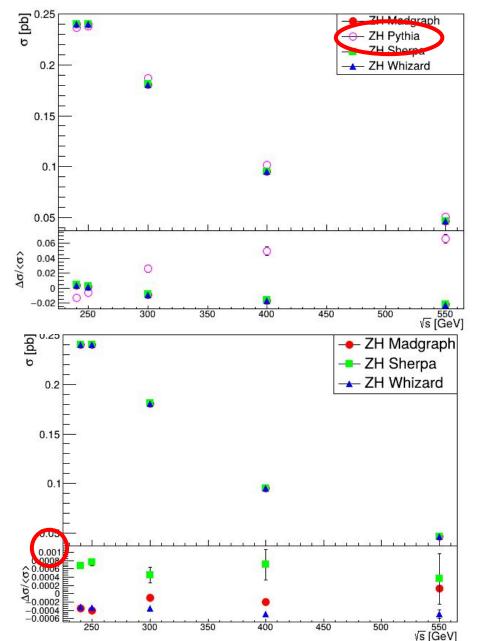

- consistent initialization of parameters (de facto SLHA)
- overconstrained input (eg EW scheme)
- database
- generator specific process configuration additions

Generators: Fermion Pairs

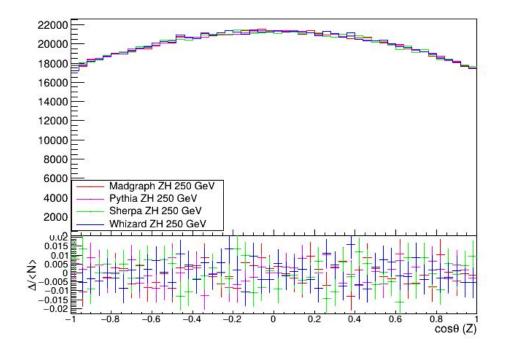

BottomUp:

- fermion pairs
- LO
- no ISR
- MuonNeutrino: 1 diagram only, no interference

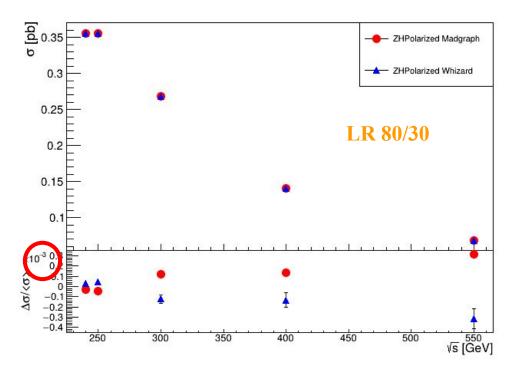



- Fixed confirmed in key4HEP on tuesday
- Madgraph/Sherpa/Whizard agreement: <0.1%
- Sherpa/Whizard agreement: ~0.01%

Generators: Fermion Pairs



Generators: ZH

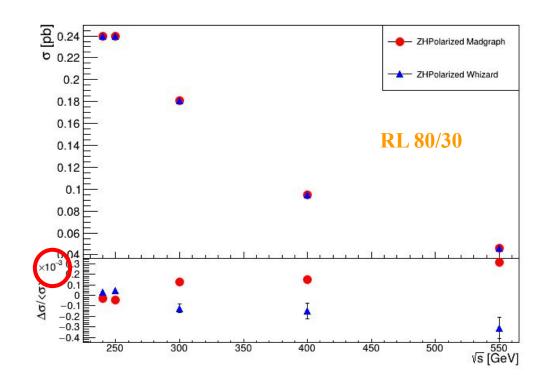


ZH LO noISR:

- several percent agreement level
- differential distribution (costheta) roughly ok
- Sherpa versus Madgraph/Whizard
 - globally: permil level agreement
 - locally: 0.01 % level
 - Sherpa being checked by Alan

Generators: Polarization

Results:


- Excellent agreement for both settings
- permil level

ZH Polarized LO noISR:

- Gudi's and Whizard's eminent domain
- Sherpa in principle available, but not released
- Madgraph can do!

Classical setting:

- 80/30 -1/1 e-/e+
- 80/30 1/-1 e-/e+

Generators: Time

Generators Running efficiency

- CI low stat only
- overhead significant

UBUNTU

10/14	Test	#12:	Run_Sherpa	Pa
11/14	Test	#11:	Run_Pythia	Pa
12/14	Test	#10:	Run_Madgraph	Pa
13/14	Test	#13:	Run_Whizard	Pa

ALMA

10/14 Test #12:	Run_Sherpa	Passed	52
11/14 Test #11:	Run_Pythia	Passed	81
	Run_Madgraph		
13/14 Test #13:	Run_Whizard	Passed	10

assed 519.10 sec assed 805.32 sec 921.24 sec 973.16 sec assed 521.62 sec 816.74 sec 1015.55 sec assed 1045.10 sec

Overall:

- MADGRAPH and Whizard similar
- Pythia (my surprise) similar to Madgraph/Whizard
- Sherpa is 2x faster than Madgraph/Whizard
- Slightly better performance on alma (probably insignificant)

Summary/Outlook

Summary:

- Exciting prospects for electron-positron Higgs/Top/EW factories :)
- MonteCarlo Generators: heritage and modern, lots of "new" comers in addition to Whizard
- key4HEP Eco-system robust, flexible and reactive
- MonteCarlo author teams do a great job:
 - 10⁻³ reached for some comparisons
 - the devil is in the details....

Outlook:

• Preparing a draft of a paper (CPC)

Thank you:

- ECFA chair Karl Jakobs for the support
- WG coordinators for collaboration