Sparticle Spectrum

SUSY Breaking with Slepton (N)LSPs

Jörn Kersten

DESY, Hamburg

Based on

W. Buchmüller, J.K., K. Schmidt-Hoberg, JHEP 02 (2006) 069 W. Buchmüller, K. Hamaguchi, J.K., Phys. Lett. B632 (2006) 366

Outline

- Introduction
- Gaugino Mediation in an Orbifold GUT
- Sparticle Spectrum
- Conclusions

- Introduction
- Question Mediation in an Orbifold GUT
- Sparticle Spectrum
- Conclusions

The Scenario

- Gravitino is the LSP
- Only gravitational interaction
- ⇒ Long-lived NLSP
 - Decays outside detector for $m_{3/2} \gtrsim 10 \text{ keV}$
 - Lifetime up to a year for heavier gravitinos
- ⇒ Looks like LSP at colliders
- ⇒ LHC experiments might find charged "LSP", if the NLSP is a charged slepton

Motivation from Cosmology

Constraints on the LSP:

- Observed dark matter density
- Big Bang Nucleosynthesis
- Distortions of the Cosmic Microwave Background
- → Bounds on gravitino mass and reheating temperature

More restrictive for unstable gravitino

- → Favored scenario:
 - Stable gravitino LSP, m_{3/2} ~ 10 − 100 GeV
 - Slepton NLSP

For SUSY breaking by Gaugino Mediation: Gravitino can be LSP, $m_{3/2} \gtrsim 10 \text{ GeV}$

Kaplan, Kribs, Schmaltz, Phys. Rev. **D62** (2000) Chacko, Luty, Nelson, Ponton, JHEP **01** (2000)

- D dimensions
- 4-dimensional branes

Kaplan, Kribs, Schmaltz, Phys. Rev. **D62** (2000) Chacko, Luty, Nelson, Ponton, JHEP **01** (2000)

- D dimensions
- 4-dimensional branes
- Gauge fields in the bulk
- Higgs in bulk or on brane

Kaplan, Kribs, Schmaltz, Phys. Rev. **D62** (2000) Chacko, Luty, Nelson, Ponton, JHEP **01** (2000)

- D dimensions
- 4-dimensional branes

Sparticle Spectrum

- Gauge fields in the bulk
- Higgs in bulk or on brane
- SUSY broken by vev F_S of gauge singlet S

Kaplan, Kribs, Schmaltz, Phys. Rev. **D62** (2000) Chacko, Luty, Nelson, Ponton, JHEP **01** (2000)

- D dimensions
- 4-dimensional branes
- Gauge fields in the bulk
- Higgs in bulk or on brane
- SUSY broken by vev F_S of gauge singlet S
- Soft masses for gauginos, Higgs, gravitino
- Squark and slepton soft masses ≈ 0
 → no SUSY flavor problem

Sparticle Spectrum

- Gaugino Mediation in an Orbifold GUT

A Concrete Model

Asaka, Buchmüller, Covi, Phys. Lett. B563 (2003)

- 6 dimensions
- SO(10) gauge symmetry
- ullet Orbifold $T^2/(\mathbb{Z}_2^{\mathsf{I}}\otimes\mathbb{Z}_2^{\mathsf{PS}}\otimes\mathbb{Z}_2^{\mathsf{GG}})$
- 4D gauge symmetry: $G_{SM'} = SU(3)_c \otimes SU(2)_L \otimes U(1)_Y \otimes U(1)_X$

Sparticle Spectrum

Zero Modes

Zero Modes

Partial 4th generation in bulk, mixes with brane fields \Rightarrow MSSM matter: linear combinations of $\psi_1, \psi_2, \psi_3, l_4, l_4^c, d_4, d_4^c$ Couplings restricted by gauge symmetry and 2 global U(1)'s

Zero Modes

Partial 4th generation in bulk, mixes with brane fields

- \Rightarrow MSSM matter: linear combinations of $\psi_1, \psi_2, \psi_3, l_4, l_4^c, d_4, d_4^c$ Couplings restricted by gauge symmetry and 2 global U(1)'s
- \Rightarrow Realistic mixing pattern: Large mixings for e_L , ν_L , d_R , Small mixings for d_L , e_R

Supersymmetry Breaking

Supersymmetry Breaking

FCNC danger from coupling of bulk matter to S

⇒ Couplings must be strongly suppressed

- Sparticle Spectrum

Boundary Conditions at the Compactifi cation Scale

Assuming $M_c \sim M_{\rm GUT}$:

- Gauge couplings $g_1=g_2=g_3=gpprox rac{1}{\sqrt{2}}$
- Gaugino masses $M_1 = M_2 = M_3 = m_{1/2}$
- Squark and slepton masses ≈ 0
- Trilinear couplings A ≈ 0
- ullet Soft Higgs masses $m_{ ilde{h}_1}^2, m_{ ilde{h}_2}^2
 eq 0$ for bulk Higgs fields

Running generates non-zero masses at low energies Calculated using SOFTSUSY

Allanach, Comput. Phys. Commun. 143 (2002)

Resulting Slepton Masses

- $m_{\tilde{h}_i}^2 = 0$: Right-handed $\tilde{\tau}$ is the NLSP Kaplan, Kribs, Schmaltz, Phys. Rev. **D62** (2000)
- $m_{\tilde{h}_1}^2 > m_{\tilde{h}_2}^2$: Heavier RH sleptons, lighter LH ones
 - Neutralino can be lighter than sleptons Chacko, Luty, Nelson, Ponton, JHEP 01 (2000)
 - ⇒ Gravitino LSP not viable (BBN)
 - Left-handed slepton can be the NLSP Kaplan, Tait, JHEP 06 (2000)

Sparticle Spectrum ($m_{1/2} = 500$ GeV, tan $\beta = 10$)

Allowed Parameter Space Region

Allowed Parameter Space Region

Sparticle Spectrum

- **Conclusions**

Conclusions

- Gravitino alternative LSP candidate
- NLSP effectively LSP in collider, unless gravitino very light
- $\tilde{\tau}$ or $\tilde{\nu}$ could be the NLSP
- Scenario can be accommodated in
 - Gaugino Mediation
 - Gravity Mediation
 - Gauge Mediation
- Decays of $\tilde{\tau}$ NLSP into gravitinos may be observable