Lepton Flavour & Number Violation @ LHC

Werner Porod IFIC-CSIC

- R-parity conservation
 - Sources flavour violation in supersymmetric models
 - Lepton flavour violating decays of supersymmetric particles;
 Implications for LHC observables
- R-parity violation

Experimental Information

Large mixing angles in neutrino sector

$$an heta_{atm}|^2 \simeq 1$$

 $an heta_{sol}|^2 \simeq 0.4$
 $U_{e3}|^2 \lesssim 0.05$

Small flavour and CP violation violation in charged lepton sector $\begin{array}{ll}BR(\mu \rightarrow e\gamma) \lesssim 1.2 \cdot 10^{-11} & BR(\mu^{-} \rightarrow e^{-}e^{+}e^{-}) \lesssim 10^{-12} \\ BR(\tau \rightarrow e\gamma) \lesssim 1.1 \cdot 10^{-7} & BR(\tau \rightarrow \mu\gamma) \lesssim 6.8 \cdot 10^{-8} \\ BR(\tau \rightarrow lll') \lesssim O(10^{-7}) \ (l, l' = e, \mu) \\ |d_e| \lesssim 10^{-27} \ e \ cm, \ |d_{\mu}| \lesssim 1.5 \cdot 10^{-18} \ e \ cm, \ |d_{\tau}| \lesssim 1.5 \cdot 10^{-16} \ e \ cm \end{array}$

possible SUSY contributions to magnetic moments of leptons $|\Delta a_e| \le 10^{-12}, \ 0 \le \Delta a_\mu \le 43 \cdot 10^{-10}, \ |\Delta a_\tau| \le 0.058$

LHC-D, Aachen 22/04/06

Sources of Flavour Violation

Sleptons:

$$M_{\tilde{l}}^{2} = \begin{pmatrix} M_{L,ij}^{2} + \frac{v_{d}^{2}Y_{ki}^{E*}Y_{kj}^{E}}{2} + D_{L}\delta_{ij} & \frac{v_{d}A_{ij} - \mu v_{u}(Y_{ij}^{E})^{*}}{\sqrt{2}} \\ \frac{v_{d}A_{ij}^{*} - \mu v_{u}Y_{ij}^{E}}{\sqrt{2}} & M_{E,ij}^{2} + \frac{v_{d}^{2}Y_{ik}^{E}Y_{jk}^{E*}}{2} + D_{R}\delta_{ij} \end{pmatrix}$$

Sneutrinos:

$$M_{\tilde{\nu}}^2 = M_{L,ij}^2 + D_{\nu}\delta_{ij}$$

where

$$D_L = \frac{\left(g'^2 - g^2\right)\left(v_d^2 - v_u^2\right)}{8}, \qquad D_R = \frac{g'^2\left(v_d^2 - v_u^2\right)}{4}$$
$$D_\nu = \frac{\left(g'^2 + g'^2\right)\left(v_d^2 - v_u^2\right)}{8}$$

Without loss of generality: $Y_{ij}^E = Y_i^E \delta_{ij}$, Y_i^E real

LHC-D, Aachen 22/04/06

 $ilde{\chi}_2^0
ightarrow ilde{l}_i l_j
ightarrow l_k l_j ilde{\chi}_1^0$

Variations around SPS1a

LHC-D, Aachen 22/04/06

talk by I. Borjanovic at 'Flavour in the era of LHC', Nov.'05, CERN

LHC-D, Aachen 22/04/06

talk by I. Borjanovic at 'Flavour in the era of LHC', Nov.'05, CERN

L=100 fb ⁻¹	Fit results			
Edge	Nominal Value	Fit Value	Syst. Error Energy Scale	Statistica Error
$m(ll)^{edge}$	77.077	77.024	0.08	0.05
$m(qll)^{ m edge}$	431.1	431.3	4.3	2.4
$m(ql)_{\min}^{ m edge}$	302.1	300.8	3.0	1.5
$m(ql)_{\max}^{\text{edge}}$	380.3	379.4	3.8	1.8
$m(qll)^{\text{thres}}$	203.0	204.6	2.0	2.8
	$\chi^2 = \sum \chi_j^2 = \sum$	$\sum \left[\frac{E_j^{\text{theory}}(\vec{m})}{\sigma_i^{\text{e}}} \right]$	$\left -E_{j}^{\exp} \right ^{2}$	
	$E^i_j = E^{\rm nom}_j + \epsilon$	$a_j^i \sigma_j^{\text{fit}} + b^i \sigma_j$	Escale j	
$m(\chi_1^{\circ}) = 96 \text{ GeV}$ $m(l_R) = 143 \text{ GeV}$ m(-0) = 177 GeV	$\Delta m(\chi_1^0) = 4.8 \text{ GeV}, \Delta m(\chi_2^0) = 4.7 \text{ GeV},$			
$m(\chi_2^{\circ}) = 1 / / \text{GeV}$ $m(q_1) = 540 \text{ GeV}$	$\Delta m(l_R) = 4.8 \text{ G}$	GeV, Δt	$m(q_L) = 8.7 C$	GeV

Gjelsten, Lytken, Miller, Osland, Polesello, ATL-PHYS-2004-007

LHC-D, Aachen 22/04/06

 $100/\Gamma_{tot}d\Gamma(\tilde{\chi}^0_2 \rightarrow l^+l^-\tilde{\chi}^0_1)/dm(l^+l^-)$ 0.05 $e^+e^-(=\mu^+\mu^-)$ [LFC] 0.04 0.03 0.02 0.01 0 20 40 60 80 0 $m(l^+l^-)$ [GeV]

A.Bartl et al., hep-ph/0510074

Bilinearly broken R-parity

Is defined as MSSM + $\epsilon_i \hat{L}_i \hat{H}_u$ + $B_i \epsilon_i \tilde{L}_i H_u$ $B_i \epsilon_i$ induces sneutrinos vevs v_i $(\lambda'_{ijk} \simeq (\epsilon_i/\mu) h^D_{jk}, \ \lambda_{ijk} \simeq (\epsilon_{[i}/\mu) h^E_{j]k} + v'_i)$

Induced mixings: (leptons, charginos), (neutrinos, neutralinos), (Higgs bosons, sleptons)

Solves neutrino problems:

Atmospheric at tree level, solar at loop level

Negligible flavour violating decays of leptons: BR($\mu \rightarrow e\gamma$) < 10⁻¹⁷, BR($\tau \rightarrow e\gamma, \mu\gamma$) < 10⁻¹⁶.

Leads to predictions for collider physics

Summing over all neutrinos.

W.Porod et al., hep-ph/0011248

LHC-D, Aachen 22/04/06

Conclusions

- Lepton flavour violating SUSY decays can have large branching ratios despite tight constraints from rare decay
- Lepton flavour violating SUSY decays affect flavour conserving observables
- R-parity violation: additional leptons/ jets it is possible to measure neutrino mixing angles at LHC