Evaporating Primordial Black Holes: Reformation and Isocurvature Perturbations

THK, Philip Lu, Phys.Lett.B 865 (2025) 139488, arXiv:2411.07469

THK, Jinn-Ouk Gong, Donghui Jeong, Dong-Won Jung, Yeong Gyun Kim, and Kang Young Lee, arXiv:2503.14581

Speaker: **TaeHun Kim** (School of Physics, KIAS, Korea)

Abstract

"Light mass PBHs with $M \lesssim 10^9 \, \mathrm{g}$ can impact the cosmology depending on their early Universe abundance."

Outline

- Introduction : Evaporating PBHs
- PBH reformation (Dominating; arXiv:2411.07469)
- Isocurvature perturbation generation (Not dominating; arXiv:2503.14581)
- Summary & Conclusion

Introduction: PBHs

Carr et. al. (2021)

• "PBHs are hypothetical BHs that formed soon after the Big Bang"

https://en.wikipedia.org/wiki/Cosmic_inflation#/media/File:History_of_the_Universe.svg

Introduction: Evaporating PBHs

Carr et. al. (2021)

• Particularly interested below $\sim 10^{15} \, \mathrm{g}$: Evaporation

- $M \sim 10^{14}$ g evaporates now
 - CMB, γ and cosmic rays
- $M \sim 10^9$ g evaporates at BBN
 - Light element abundances
- $M \lesssim 10^9$ g: no constraints
 - → We see their impact on cosmology depending on their domination.

Abstract

"Light mass PBHs with $M \lesssim 10^9 \, \mathrm{g}$ can impact the cosmology depending on their early Universe abundance."

- Outline
 - Introduction: PBHs
 - PBH reformation (Dominating; arXiv:2411.07469)
 - Isocurvature perturbation generation (Not dominating; arXiv:2503.14581)
 - Summary & Conclusion

Cosmic timeline of eMD by PBHs

Copious production of PBHs

eMD starts:

 $\rho_{\rm PBH} \propto 1/a^3$ $\rho_r \propto 1/a^4$

Reheating by PBH evaporation:

Standard timeline resumes

- PBH reformation
 - Random overdensities in PBH distribution → collapse → much heavier PBHs

- This can happen during eMD, because
 - Gravitational collapse of overdensities is easier in MD then RD
 - Matter density perturbation grows during MD

Khlopov, Polnarev (1980)

Polnarev, Khlopov (1981)

Harada et. al. (2016)

Harada et. al. (2017)

Kokubu et. al. (2018)

- Gravitational collapse in MD
 - No pressure : Eventually any overdensity will collapse?
 - Spatial profile of an overdensity should be homogeneous and isotropic enough
 - To fall into its own Schwarzschild radius without virialization
 - Collapse probability : $\beta \simeq 0.05556 \times \sigma^5$
- Poisson noise \rightarrow Transfer function $\rightarrow d\sigma^2/d \ln k \rightarrow \sigma \rightarrow \beta \rightarrow f_{PBH}$ Initial PBH

 Reformation

Reformed PBH population case study

Case	$T_{\rm if}~({ m GeV})$	$eta_{ m if}$	γ	$f_{ m PBH}$
A	2.88×10^{15}	1.08×10^{-4}	0.5	2.40×10^{-5}
В	5.89×10^{14}	1.45×10^{-5}	0.5	9.05×10^{-12}

- Case A: Reformed PBH population right below the current BBN bound
- Case B: Reformed PBH population
 right below the current γ-ray bound
- "PBHs with observable signals are reformed from much lighter PBHs produced in the early Universe"
 - Population decoupling

Correlated GW signal

Remaining majority of original PBHs evaporate and emit GWs

- High frequency GWs are emitted
 - $\sim 10 \text{ kHz} 1 \text{ MHz}$
- Could be detected by the next generation CMB-S4 experiment through $\Delta N_{
 m eff}$
- Correlated GW signal.
 "Possible multi-messenger
 detection of PBH reformation"

Abstract

"Light mass PBHs with $M \lesssim 10^9 \, \mathrm{g}$ can impact the cosmology depending on their early Universe abundance."

- Outline
 - Introduction: PBHs
 - PBH reformation (Dominating; arXiv:2411.07469)
 - Isocurvature perturbation generation (Not dominating; arXiv:2503.14581)
 - Summary & Conclusion

Isocurvature perturbations

- Isocurvature perturbations : $S_{XY} \equiv 3(\zeta_X \zeta_Y) \ (X, Y = \gamma, b, d)$
 - Cosmological perturbation; difference between different energy components
 - Constrained by CMB observation
- This work: "PBH evaporation generates isocurvature perturbations"
 - → CMB constrains evaporating PBHs through isocurvature perturbation.
 - PBH distribution ≠ Average (adiabatic mode) : "PBHs are biased"
 - Composition: Hawking radiation ≠ Inflationary reheating products (background)

PBHs as an isocurvature source

Distribution at cosmological scale

Example particle composition:

- After evaporation, each of γ , b, and d gets different perturbation
 - Isocurvature perturbations!
 - PBH bias & Particle composition

$$S_{XY,0} = 3 \left(\frac{\bar{\rho}_{XPBH,0}}{\bar{\rho}_{X,0}} - \frac{\bar{\rho}_{YPBH,0}}{\bar{\rho}_{Y,0}} \right) (\zeta_{PBH} - \zeta)$$

Simplified case study

- Concrete demonstration: Example constraint for evaporating PBHs
 - PBH bias : Local type primordial non-Gaussianity : $\zeta = \zeta_G + (3/5) f_{NL} (\zeta_G^2 \langle \zeta_G^2 \rangle)$
 - Long mode enhances short mode's amplitude → Enhanced PBH clustering
 - PBH bias : $\zeta_{\text{PBH}} \sim \mathcal{O}(10^2) f_{\text{NL}} \times \zeta$

Distribution at cosmological scale

Simplified case study

Particle model

- PBH energy fraction
- Branching ratio
- \rightarrow PBH contribution to γ , b, d
- Subsequent redshift
- Baryon-symmetric Hawking radiation. No net baryons from PBHs.
- Single scalar DM, out of equilibrium (no longer converts to SM)

Isocurvature constraints on PBH

• PBH-generated isocurvature perturbation

$$S_{XY,0} = 3\left(\frac{\bar{\rho}_{XPBH,0}}{\bar{\rho}_{X,0}} - \frac{\bar{\rho}_{YPBH,0}}{\bar{\rho}_{Y,0}}\right)(\zeta_{PBH} - \zeta) \neq 0$$

• Observed quantity: Isocurvature fraction

$$\beta_{\text{iso}} = \frac{\mathcal{P}_S}{\mathcal{P}_\zeta + \mathcal{P}_S} = \frac{\left(S_{\gamma d,0} + \frac{\Omega_b}{\Omega_d} S_{\gamma b,0}\right)^2}{\zeta^2 + \left(S_{\gamma d,0} + \frac{\Omega_b}{\Omega_d} S_{\gamma b,0}\right)^2} < 0.001 \text{ (Planck 2018)}$$

Isocurvature constraints on PBH

- Isocurvature bound on PBHs
- Past abundance for $M \lesssim 10^9$ g can now be observationally constrained
 - Depends on DM model and $f_{\rm NL}$
 - But the first observational constraints for PBHs with $M \lesssim 10^9 {
 m g}$ (up to our knowledge)

Isocurvature constraints on PBH

- Above the gray line, PBH domination happens
 - Universe is effectively a single fluid
 - No isocurvature constraints above the gray line

Abstract

"Light mass PBHs with $M \lesssim 10^9 \, \mathrm{g}$ can impact the cosmology depending on their early Universe abundance."

- Outline
 - Introduction: PBHs
 - PBH reformation (Dominating; arXiv:2411.07469)
 - Isocurvature perturbation generation (Not dominating; arXiv:2503.14581)
 - Summary & Conclusion

Summary & Conclusion

- PBHs with $M \lesssim 10^9 \, \mathrm{g}$ are currently not constrained by observations
- If they dominated the Universe, they could have undergone reformation

"PBH reformation can decouple PBH populations in the late Universe and in the early Universe."

• If they remained subdominant, they generate isocurvature perturbations

"CMB can observationally constrain the evaporating PBHs."

THE END. Thank you!

Backup slides

Cosmic timeline of eMD by PBHs

- β_{if} : Initial PBH energy fraction
- M_{PBH}: Initial PBH mass

• Allowed region of $(M_{\text{PBH}}, \beta_{\text{if}})$ for PBH eMD

??? (not well known)

- Naked singularity
- Virialized
- Becomes radiation and stop by pressure
- ...

- Estimation of collapse probability : $\beta \simeq 0.05556 \times \sigma^5$
 - Only power-law suppressed.

• Density power spectrum during eMD and resulting σ

- Gray = Randomly placed initial PBHs
 - Poisson noise
- Black = Growth by transfer function

•
$$\mathcal{P}_{\delta}(t) = \mathcal{P}_{\delta}(t_{if}) \times \mathcal{T}^{2}(t)$$

• Red =
$$\frac{d\sigma^2}{d \ln k} = \mathcal{P}_{\delta}(t) \times W^2(kr)$$

•
$$\sigma \sim 10^{-3} - 10^{-4}$$

•
$$\beta \sim 10^{-20}$$

•
$$f_{\text{PBH}} \sim (M_{\text{PBH,if}} / 1 \text{ g})^{-3/2}$$

Reformed PBH population case study

Case	$T_{\rm if}~({ m GeV})$	$eta_{ m if}$	γ	$f_{ m PBH}$
A	2.88×10^{15}	1.08×10^{-4}	0.5	2.40×10^{-5}
В	5.89×10^{14}	1.45×10^{-5}	0.5	9.05×10^{-12}

- $f_{\text{PBH}} \propto \beta \times M_{\text{PBH,if}}^{-3/2}$
 - Steeply decreasing $f_{\rm PBH}$ for larger $M_{\rm PBH,if}$
- Practical reformation happens only ${\rm for}\, M_{\rm PBH,if} \lesssim 10^2 \, {\rm g}$
 - High scale inflation
 - Fragmented PBHs from FOPT
- Cannot cover the DM window

Simplified case study – Particle composition

Simplified case study – Particle composition

At present.