Non-singular solutions to the Boltzmann equation with a fluid *Ansatz*

arXiv:2412.09266

Gláuber C. Dorsch a , Thomas Konstandin b , **Enrico Perboni^b**, Daniel A. Pinto a

enrico.perboni@desy.de

Modelling the evolutions of bubbles in cosmological First Order

Phase Transitions

SYNERGIES TOWARDS THE FUTURE STANDARD MODEL

DESY Theory Workshop

23 - 26 September 2025 at DESY Hamburg, Germany

Why Cosmological First Order Phase Transitions (FOPT)?

All these processes depend crucially on the velocity of the expanding bubble wall, $\xi_{\rm w}$

The wall velocity $\xi_{ m w}$

The Klein-Gordon equation for the background field

The parameter $\xi_{
m w}$ is closely connected to the friction on the expanding wall ϕ

$$\Box \phi + \frac{dV_0}{d\phi} + \sum_{i} \frac{dm_i^2}{d\phi} \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_i} f_i(p^{\mu}, x^{\mu}) = 0$$

- V_0 is the zero-temperature potential
- f_i is the distribution function of the i-th particle
- m_i , E_i are the mass and energy of the i-th particle
- \mathscr{F} is the free-energy of the system

The wall velocity $\xi_{ m w}$

The Klein-Gordon equation for the background field

The parameter $\xi_{
m w}$ is closely connected to the friction on the expanding wall ϕ

$$\Box \phi + \frac{dV_0}{d\phi} + \sum_{i} \frac{dm_i^2}{d\phi} \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_i} f_i(p^{\mu}, x^{\mu}) = 0$$

$$\Box \phi + \frac{\partial \mathcal{F}}{\partial \phi} - \mathcal{K}(\phi) = 0$$

- V_0 is the zero-temperature potential
- f_i is the distribution function of the i-th particle
- m_i , E_i are the mass and energy of the i-th particle
- \mathscr{F} is the free-energy of the system

Equilibrium back reaction

Out of equilibrium friction

The wall velocity ξ_{w}

Solving the Boltzmann Equation (BE)

The dynamics of the particles in the plasma can be described by the BE

$$p^{\mu}\partial_{\mu}f_{i}\left(x^{\mu},p^{\mu}\right) + \frac{1}{2}\partial_{\mu}m^{2}\partial_{p^{\mu}}f_{i}\left(x^{\mu},p^{\mu}\right) + \mathscr{C}_{i} = 0,$$

The source term drives particles out of equilibrium

Collision terms, couples the different species in the plasma

[1407.3132] Konstandin et al.

The wall velocity $\xi_{ m w}$

Solving the Boltzmann Equation (BE)

The dynamics of the particles in the plasma can be described by the BE

$$p^{\mu}\partial_{\mu}f_{i}\left(x^{\mu},p^{\mu}\right) + \frac{1}{2}\partial_{\mu}m^{2}\partial_{p^{\mu}}f_{i}\left(x^{\mu},p^{\mu}\right) + \mathscr{C}_{i} = 0,$$

The source term drives particles out of equilibrium

Collision terms, couples the different species in the plasma

We transform this integro-differential equation into a set of ODEs by:

1. Linearisation and Ansatz on distributions:
$$f_i(p^{\mu}, x^{\mu}) = f_{eq,i} + \delta f_i(p^{\mu}, x^{\mu})$$

2. Taking momenta:
$$\int \frac{d^3p}{(2\pi)^3 E}, \int \frac{d^3p}{(2\pi)^3 E} p_\mu u^\mu, \int \frac{d^3p}{(2\pi)^3 E} p_\mu \bar{u}^\mu, \dots$$

[1407.3132] Konstandin et al.

The wall velocity $\xi_{ m w}$

Back to the friction

We transform this integro-differential equation into a set of ODEs by:

1. Linearisation and Ansatz on distributions:
$$f_i(p^{\mu}, x^{\mu}) = f_{\rm eq,i} + \delta f_i(p^{\mu}, x^{\mu})$$

2. Taking momenta:
$$\int \frac{d^3p}{(2\pi)^3 E'} \int \frac{d^3p}{(2\pi)^3 E} p_{\mu} u^{\mu}, \int \frac{d^3p}{(2\pi)^3 E} p_{\mu} \bar{u}^{\mu}, \dots$$

The wall velocity $\xi_{\rm w}$

Back to the friction

We transform this integro-differential equation into a set of ODEs by:

1. Linearisation and Ansatz on distributions: $f_i(p^{\mu}, x^{\mu}) = f_{eq,i} + \delta f_i(p^{\mu}, x^{\mu})$

2. Taking momenta:
$$\int \frac{d^3p}{(2\pi)^3 E}, \int \frac{d^3p}{(2\pi)^3 E} p_\mu u^\mu, \int \frac{d^3p}{(2\pi)^3 E} p_\mu \bar{u}^\mu, \dots$$

Enrico Perboni

fluid Ansatz
$$\delta f=f'\delta_p$$
 , $\delta_p=\delta\mu+p^\mu(\delta u_\mu-u_\mu\delta T/T)$ BEs for the 3 fluctuations

 $\delta\mu$, chemical pot. fluctuations

 $\delta u_{\mu'}$ velocity fluctuations

 δT , temperature fluctuations

The wall velocity $\xi_{ m w}$

Back to the friction

We transform this integro-differential equation into a set of ODEs by:

1. Linearisation and Ansatz on distributions: $f_i(p^{\mu}, x^{\mu}) = f_{eq,i} + \delta f_i(p^{\mu}, x^{\mu})$

2. Taking momenta:
$$\int \frac{d^3p}{(2\pi)^3 E'} \int \frac{d^3p}{(2\pi)^3 E} p_{\mu} u^{\mu}, \int \frac{d^3p}{(2\pi)^3 E} p_{\mu} \bar{u}^{\mu}, \dots$$

fluid Ansatz
$$\delta f=f'\delta_p$$
 , $\delta_p=\delta\mu+p^\mu(\delta u_\mu-u_\mu\delta T/T)$ BEs for the 3 fluctuations

Usual approach:

$$T_{i}(z) = \bar{T}_{bg} + \delta T_{i}(z),$$

$$v_{i}(z) = \bar{v}_{bg} + \delta v_{i}(z)$$

 $\delta\mu$, chemical pot. fluctuations

 $\delta u_{\mu'}$ velocity fluctuations

 δT , temperature fluctuations

The wall velocity $\xi_{ m w}$

Back to the friction

We transform this integro-differential equation into a set of ODEs by:

1. Linearisation and Ansatz on distributions: $f_i(p^{\mu}, x^{\mu}) = f_{\rm eq,i} + \delta f_i(p^{\mu}, x^{\mu})$

2. Taking momenta:
$$\int \frac{d^3p}{(2\pi)^3 E'} \int \frac{d^3p}{(2\pi)^3 E} p_{\mu} u^{\mu}, \int \frac{d^3p}{(2\pi)^3 E} p_{\mu} \bar{u}^{\mu}, \dots$$

fluid Ansatz
$$\delta f=f'\delta_p$$
 , $\delta_p=\delta\mu+p^\mu(\delta u_\mu-u_\mu\delta T/T)$ BEs for the 3 fluctuations

Usual approach:

$$T_{i}(z) = \bar{T}_{bg} + \delta T_{i}(z),$$

$$v_{i}(z) = \bar{v}_{bg} + \delta v_{i}(z)$$

Inserting the fluctuations in the linearised version of the Klein-Gordon equation we can solve for the wall velocity $\xi_{\rm W}$ and width $L_{\rm W}$

 $\delta\mu$, chemical pot. fluctuations

 $\delta u_{\mu'}$ velocity fluctuations

 δT , temperature fluctuations

Once obtained the fluctuations δT_i , δv_i and $\delta \mu_i$, we go back to the KG equation and solve

for $\xi_{
m w}$ and $L_{
m w}$:

$$-\phi'' + \frac{\partial \mathcal{F}}{\partial \phi} + \sum_{i} \frac{dm_i^2}{d\phi} \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_i} \delta f_i(p, x) = 0.$$

$$\int\! dz \left(\text{KG eq.} \right) \times \phi' = 0 \qquad \qquad \frac{\mathcal{F} \mid_{-}^{+}}{T_{+}^{4}} - \frac{1}{T_{+}^{4}} \int\! dz \left(\partial_{z} T_{\text{bg}} \right) \frac{\partial \mathcal{F}}{\partial T} + f_{\text{fl}} + f_{\text{light}} = 0$$

$$\int dz \, (\text{KG eq.}) \times \phi' \left(2\phi - \phi_0\right) = 0 \qquad \frac{2}{15(T_+ L_w)^2} \left(\frac{\phi_0}{T_+}\right)^3 + \frac{W}{T_+^5} + g_{\text{fl}} + g_{\text{light}} = 0$$

A "sonic boom" in the friction

[1407.3132] Konstandin et al.

A divergent friction coming from massless particles is found at the speed of sound!

A "sonic boom" in the friction

[1407.3132] Konstandin et al.

A divergent friction coming from massless particles is found at the speed of sound!

Is it physical?

Hints from hydrodynamics

Hydrodynamics tells us that macroscopic quantities change across a phase transition front to satisfy $\partial_\mu T^{\mu\nu}=0$. This gives us the conditions

$$\gamma_{+}^{2}v_{+}^{2}\omega_{+} - \mathcal{F}_{+} = \gamma_{-}^{2}v_{-}^{2}\omega_{-} - \mathcal{F}_{-}$$

$$\gamma_{+}^{2}v_{+}\omega_{+} = \gamma_{-}^{2}v_{-}\omega_{-}$$

[1004.4187] J.R. Espinosa et al.

Hints from hydrodynamics

Hydrodynamics tells us that macroscopic quantities change across a phase transition front to satisfy $\partial_u T^{\mu\nu}=0$. This gives us the conditions

$$\gamma_{+}^{2}v_{+}^{2}\omega_{+} - \mathcal{F}_{+} = \gamma_{-}^{2}v_{-}^{2}\omega_{-} - \mathcal{F}_{-}$$

$$\gamma_{+}^{2}v_{+}\omega_{+} = \gamma_{-}^{2}v_{-}\omega_{-}$$

[1004.4187] J.R. Espinosa et al.

Hints from hydrodynamics

Hydrodynamics tells us that macroscopic quantities change across a phase transition front to satisfy $\partial_\mu T^{\mu\nu}=0$. This gives us the conditions

$$\gamma_{+}^{2}v_{+}^{2}\omega_{+} - \mathcal{F}_{+} = \gamma_{-}^{2}v_{-}^{2}\omega_{-} - \mathcal{F}_{-}$$

$$\gamma_{+}^{2}v_{+}\omega_{+} = \gamma_{-}^{2}v_{-}\omega_{-}$$

If the temperature and the velocity on the two sides of the wall are not the same, it would impact on the validity of the linearisation procedure.

[1004.4187] J.R. Espinosa et al.

Energy-momentum conservation

The singularity arises because of an interplay between the energy-momentum conservation in the BE and the linearisation procedure

Energy-momentum conservation

The singularity arises because of an interplay between the energy-momentum conservation in the BE and the linearisation procedure

$$A \cdot q' + \Gamma \cdot q = S$$

Energy-momentum conservation

The singularity arises because of an interplay between the energy-momentum conservation in the BE and the linearisation procedure

Energy-momentum conservation

The singularity arises because of an interplay between the energy-momentum conservation in the BE and the linearisation procedure

Energy-momentum conservation

The singularity arises because of an interplay between the energy-momentum conservation in the BE and the linearisation procedure

We enforce energy-momentum conservation at full non linear level to find $v_{bg}(z)$ and $T_{bg}(z)$ and implement perturbation theory on top of this.

We define the background by imposing the conservation of its energy-momentum across the phase transition wall. This means solving

$$v_{\text{bg}}^2 \gamma_{\text{bg}}^2 \omega_{\text{bg}} - \mathcal{F}_{\text{bg}} + \frac{1}{2} (\partial_z \phi)^2 = k_1,$$

$$v_{\text{bg}}\gamma_{\text{bg}}^2\omega_{\text{bg}}=k_2$$
.

Scalar field contribution

Modified matching conditions for $v_{bg}(z)$ and $T_{bg}(z)$

We define the background by imposing the conservation of its energy-momentum across the phase transition wall. This means solving

$$v_{\text{bg}}^2 \gamma_{\text{bg}}^2 \omega_{\text{bg}} - \mathcal{F}_{\text{bg}} + \frac{1}{2} (\partial_z \phi)^2 = k_1,$$

$$v_{\text{bg}}\gamma_{\text{bg}}^2\omega_{\text{bg}}=k_2$$
.

Scalar field contribution

Modified matching conditions $\text{for } v_{bg}(z) \text{ and } T_{bg}(z)$

Going back to the BEs:

$$p^{\mu}\partial_{\mu}f_{i}\left(x^{\mu},p^{\mu}\right) + \frac{1}{2}\partial_{\mu}m^{2}\partial_{p^{\mu}}f_{i}\left(x^{\mu},p^{\mu}\right) + \mathcal{C}_{i} = 0$$

Old approach	Our approach
$T_{i}(z) = \bar{T}_{bg} + \delta T_{i}(z)$	$T_{i}(z) = T_{bg}(z) + \delta T_{i}(z)$
$v_i(z) = \bar{v}_{bg} + \delta v_i(z)$	$v_i(z) = v_{bg}(z) + \delta v_i(z)$
$\mu_i(z) = \mu_{\rm bg} + \delta \mu_i(z)$	$\mu_i(z) = \mu_{\rm bg}(z) + \delta\mu_i(z)$

Going back to the BEs:

$$p^{\mu}\partial_{\mu}f_{i}\left(x^{\mu},p^{\mu}\right) + \frac{1}{2}\partial_{\mu}m^{2}\partial_{p^{\mu}}f_{i}\left(x^{\mu},p^{\mu}\right) + \mathcal{C}_{i} = 0$$

Old approach

Our approach

$$T_i(z) = \bar{T}_{bg} + \delta T_i(z)$$

$$T_i(z) = T_{bg}(z) + \delta T_i(z)$$

$$v_i(z) = \bar{v}_{bg} + \delta v_i(z)$$

$$v_i(z) = v_{bg}(z) + \delta v_i(z)$$

$$\mu_i(z) = \mu_{\text{bg}} + \delta \mu_i(z)$$

$$\mu_i(z) = \mu_{bg}(z) + \delta\mu_i(z)$$

This conceptual difference implies the presence of a new term (one for every particle) in the BEs!

$$p^{\mu} \partial_{\mu} f_{i}^{\text{bg}} \left(x, p \right) \supset (f_{i}^{\text{bg}})' \frac{p^{\mu} p^{\nu}}{T} \left(u_{\nu} \frac{\partial_{\mu} T}{T} - \partial_{\mu} u_{\nu} \right)$$

This new "source" term is fundamental to ensure energy-momentum conservation at BEs level

For the heavy particles, the main source of friction comes from the $\partial m^2(z)$ term

$\mathcal{F}(\phi,T) = V_0(\phi) - \frac{a}{3}T^4 + \frac{c}{2}\phi^2T^2, \quad V_0(\phi) = -\frac{\mu^2}{2}\phi^2 + \frac{\tilde{\lambda}}{4}\phi^4 + \frac{1}{8\Lambda^2}\phi^6$

Old

Benchmark model: SM with low cutoff

New

For the "light"
particles the new
source term takes
away the
divergence!

$$\mathcal{F}(\phi, T) = V_0(\phi) - \frac{a}{3}T^4 + \frac{c}{2}\phi^2 T^2, \quad V_0(\phi) = -\frac{\mu^2}{2}\phi^2 + \frac{\tilde{\lambda}}{4}\phi^4 + \frac{1}{8\Lambda^2}\phi^6$$

Pressure acting on the expanding wall for

 $\Lambda = 625$ GeV and

 $\Lambda = 690 \, \text{GeV}$

$$\mathcal{F}(\phi,T) = V_0(\phi) - \frac{a}{3}T^4 + \frac{c}{2}\phi^2T^2, \quad V_0(\phi) = -\frac{\mu^2}{2}\phi^2 + \frac{\tilde{\lambda}}{4}\phi^4 + \frac{1}{8\Lambda^2}\phi^6$$

Pressure acting on the expanding wall for

 $\Lambda = 625$ GeV and

 $\Lambda = 690 \, \text{GeV}$

The grey region represents the limit where the old approach is not trustable anymore

Solutions of ξ_{W} for different Λ

Thank you for your attention!

$$v_{+} = \frac{1}{1 + \alpha_{+}} \left[\left(\frac{v_{-}}{2} + \frac{1}{6v_{-}} \right) \pm \sqrt{\left(\frac{v_{-}}{2} + \frac{1}{6v_{-}} \right)^{2} + \alpha_{+}^{2} + \frac{2}{3}\alpha_{+} - \frac{1}{3}} \right],$$

which is regular if we send $v_- \to c_s$ but become singular if in a second moment we linearise with respect to α_+ .

A "sonic boom" in the friction

Is it physical?

The solutions for L_{W}

$$-\phi'' + \frac{\partial \mathcal{F}}{\partial \phi} + \sum_{i} \frac{dm_i^2}{d\phi} \int \frac{d^3p}{(2\pi)^3} \frac{1}{2E_i} \delta f_i(p, x) = 0$$

1.
$$dz[l.h.s of KG] \times \phi' = 0$$

$$f_{\rm fl} \equiv \frac{N_t}{2T_+^2} \int dz \, \frac{dm_t^2}{dz} \left(c_{f1} \delta \mu_f + c_{f2} \delta \tau_f \right) + \frac{N_W}{2T_+^2} \int dz \, \frac{dm_W^2}{dz} \left(c_{b1} \delta \mu_b + c_{b2} \delta \tau_b \right)$$

$$f_{\rm light} \equiv \frac{N_t}{2T_+^2} \int dz \, \frac{dm_t^2}{dz} \, c_{f2} \, \delta \tau_{\rm light} + \frac{N_W}{2T_+^2} \int dz \, \frac{dm_W^2}{dz} \, c_{b2} \, \delta \tau_{\rm light}$$

2.
$$dz$$
[l.h.s of KG] $\times \phi'(2\phi - \phi_0) = 0$