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Why Cosmological First Order Phase Transitions (FOPT)?

Bubble nucleation 

ϕ = 0

ϕ ≠ 0
ϕ ≠ 0

ϕ ≠ 0

Baryogenesis

Particle Dark Matter

Primordial magnetic fields

Stochastic background of 
gravitational waves
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All these processes depend crucially 
on the velocity of the expanding 

bubble wall,  ξw
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The wall velocity ξw
The Klein-Gordon equation for the background field

The parameter  is closely connected to the friction on the expanding wall  ξw ϕ

□ ϕ +
dV0

dϕ
+ ∑

i

dm2
i

dϕ ∫
d3p

(2π)3

1
2Ei

fi(pμ, xμ) = 0

•  is the zero-temperature potential 

•  is the distribution function of the th particle 

• ,  are the mass and energy of the th particle 

•  is the free-energy of the system

V0

fi i−
mi Ei i−
ℱ
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The wall velocity ξw
The Klein-Gordon equation for the background field

The parameter  is closely connected to the friction on the expanding wall  ξw ϕ

□ ϕ +
dV0

dϕ
+ ∑

i

dm2
i

dϕ ∫
d3p

(2π)3

1
2Ei

fi(pμ, xμ) = 0

□ ϕ +
∂ℱ
∂ϕ

− 𝒦(ϕ) = 0

•  is the zero-temperature potential 

•  is the distribution function of the th particle 

• ,  are the mass and energy of the th particle 

•  is the free-energy of the system

V0

fi i−
mi Ei i−
ℱ

Equilibrium back 
reaction

Out of equilibrium 
friction
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The wall velocity ξw
Solving the Boltzmann Equation (BE)

The dynamics of the particles in the plasma can be described by the BE 

pμ∂μ fi (xμ, pμ) +
1
2

∂μm2∂pμ fi (xμ, pμ) + 𝒞i = 0,

The source term drives 
particles out of equilibrium 

Collision terms, couples the 
different species in the plasma

[1407.3132] Konstandin et al.
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The dynamics of the particles in the plasma can be described by the BE 

pμ∂μ fi (xμ, pμ) +
1
2

∂μm2∂pμ fi (xμ, pμ) + 𝒞i = 0,

The source term drives 
particles out of equilibrium 

Collision terms, couples the 
different species in the plasma

We transform this integro-differential equation into a set of ODEs by: 
1. Linearisation and Ansatz on distributions:             

2.Taking momenta: , , , …

fi(pμ, xμ) = feq,i + δfi(pμ, xμ)

∫
d3p

(2π)3E ∫
d3p

(2π)3E
pμuμ ∫

d3p
(2π)3E

pμūμ
[1407.3132] Konstandin et al.
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The wall velocity ξw
Back to the friction
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The wall velocity ξw
Back to the friction

,   chemical pot. fluctuations  
,   velocity fluctuations 

 ,   temperature fluctuations

δμ
δuμ

δT
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BEs for the 3 fluctuations
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The wall velocity ξw
Back to the friction

,   chemical pot. fluctuations  
,   velocity fluctuations 

 ,   temperature fluctuations

δμ
δuμ

δT

Inserting the fluctuations in the linearised version of the Klein-
Gordon equation we can solve for the wall velocity  and width ξw Lw

Enrico Perboni DESY Theory Workshop, DESY Hamburg 
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A new way for solving Boltzmann Equations
Once obtained the fluctuations ,  and , we go back to the KG equation and solve 

for  and : 

δTi δvi δμi
ξw Lw

−ϕ′￼′￼+
∂ℱ
∂ϕ

+ ∑
i

dm2
i

dϕ ∫
d3p

(2π)3

1
2Ei

δfi(p, x) = 0.

∫ dz (KG eq.) × ϕ′￼ = 0

∫ dz (KG eq.) × ϕ′￼(2ϕ − ϕ0) = 0

ℱ |+
−

T4
+

−
1

T4
+ ∫ dz (∂z Tbg) ∂ℱ

∂T
+ ffl + flight = 0

2
15(T+Lw)2 ( ϕ0

T+ )
3

+
W
T5

+
+ gfl + glight = 0
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A “sonic boom” in the friction

A divergent friction coming from massless 
particles is found at the speed of sound!

[1407.3132] Konstandin et al.
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A “sonic boom” in the friction

A divergent friction coming from massless 
particles is found at the speed of sound! Is it physical?

[1407.3132] Konstandin et al.
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Hints from hydrodynamics
Hydrodynamics tells us that macroscopic quantities change across a phase transition 
front to satisfy . This gives us the conditions 

 

∂μTμν = 0

γ2
+v2

+ω+ − ℱ+ = γ2
−v2

−ω− − ℱ−
γ2

+v+ω+ = γ2
−v−ω−

[1004.4187] J.R. Espinosa et al.

The origin of the singularity 
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If the temperature and the velocity on the two sides 
of the wall are not the same, it would impact on the 

validity of the linearisation procedure.



The origin of the singularity 

The singularity arises because of an interplay between the energy-momentum 
conservation in the BE and the linearisation procedure

[2112.12548] C. Dorsch et al.

Energy-momentum conservation
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The origin of the singularity 

The singularity arises because of an interplay between the energy-momentum 
conservation in the BE and the linearisation procedure

[2112.12548] C. Dorsch et al.
We enforce energy-momentum conservation at full non 

linear level to find  and  and implement 
perturbation theory on top of this.

vbg(z) Tbg(z)

χ ⋅ A ⋅ Δq = χ∫ Sdz ∝ m2 T2A ⋅ q′￼+ Γ ⋅ q = S

Energy-momentum conservation

Two vectors  such that χ χ ⋅ Γ = 0
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A new way for solving Boltzmann Equations
We define the background by imposing the conservation of its energy-momentum across 
the phase transition wall. This means solving 

, v2
bgγ2

bgωbg − ℱbg +
1
2

(∂zϕ)2 = k1

vbgγ2
bgωbg = k2 .

Modified matching conditions 
for   and vbg(z) Tbg(z)

Scalar field contribution
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A new way for solving Boltzmann Equations

   Going back to the BEs:                          pμ∂μ fi (xμ, pμ) +
1
2

∂μm2∂pμ fi (xμ, pμ) + 𝒞i = 0

Old approach Our approach

Ti(z) = T̄bg + δTi(z) Ti(z) = Tbg(z) + δTi(z)

μi(z) = μbg + δμi(z) μi(z) = μbg(z) + δμi(z)

vi(z) = v̄bg + δvi(z) vi(z) = vbg(z) + δvi(z)
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Ti(z) = T̄bg + δTi(z) Ti(z) = Tbg(z) + δTi(z)

μi(z) = μbg + δμi(z) μi(z) = μbg(z) + δμi(z)

vi(z) = v̄bg + δvi(z) vi(z) = vbg(z) + δvi(z)

This conceptual difference implies the 
presence of a new term (one for every particle) 

in the BEs! 

pμ∂μ f bg
i (x, p) ⊃ ( f bg

i )′￼

pμpν

T (uν
∂μT
T

− ∂μuν)
This new “source” term is fundamental 

to ensure energy-momentum 
conservation at BEs level
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Results
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For the heavy particles, the 
main source of friction 
comes from the  term∂m2(z)
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Benchmark model: SM with low cutoff 

,    ℱ(ϕ, T ) = V0(ϕ) −
a
3

T4 +
c
2

ϕ2T2 V0(ϕ) = −
μ2

2
ϕ2 +

λ̃
4

ϕ4 +
1

8Λ2
ϕ6



Results
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Thank you for your attention!
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The origin of the singularity 

v+ =
1

1 + α+ ( v−

2
+

1
6v− ) ± ( v−

2
+

1
6v− )

2

+ α2
+ +

2
3

α+ −
1
3

,

which is regular if we send  but become singular if in a second 

moment we linearise with respect to .  

v− → cs
α+



A “sonic boom” in the friction

A divergent friction coming from 
massless particles is found at the 
speed of sound!

Is it physical?



The solutions for Lw
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−ϕ′￼′￼+
∂ℱ
∂ϕ

+ ∑
i

dm2
i

dϕ ∫
d3p

(2π)3

1
2Ei

δfi(p, x) = 0

∫ dz[l.h.s of KG ] × ϕ′￼ = 0

∫ dz[l.h.s of KG] × ϕ′￼(2ϕ − ϕ0) = 0

1.

2.

ffl ≡
Nt

2T2
+ ∫ dz

dm2
t

dz (cf1δμf + cf2δτf) +
NW

2T2
+ ∫ dz

dm2
W

dz (cb1δμb + cb2δτb)

flight ≡
Nt

2T2
+ ∫ dz

dm2
t

dz
cf2 δτlight +

NW

2T2
+ ∫ dz

dm2
W

dz
cb2 δτlight


