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FOPTs: direct vs inverse
Let us consider a system described by the scalar potential V (ϕ, Tn)

🚀

🚀

Tunneling decay rate of the false vacuum

Γ ∼ Ae−SE , Euclidean action

SE computed on the sol. of the EOMs
The solutions with the least action are

spherically symmetric
Coleman, Callan (’77)
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How?
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FOPTs: How?
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Hydrodynamic description
Coupled system of the scalar background and the plasma

T µν = T µν
ϕ + T µν

p ,

T µν
ϕ = ∂µϕ∂νϕ− gµν

[
1
2(∂ϕ)2 − V (ϕ)

]
T µν

p = (e + p)uµuν − p gµν

Energy conservation: ∇µT µν = 0 →

{
Continuity eq.
Euler eq.

(for continuous waves)

Hydrodynamical flows can develop
discontinuities such as shocks or reaction fronts

→ matching conditions across discontinuities
(± bubble wall frame)

w+γ2
+v+ = w−γ2

−v−
w+γ2

+v2
+ + p+ = w−γ2

−v2
− + p−

where w = e + p = enthalpy
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Thermodynamics

Once the microphysics is specified (i.e., a model is chosen), we can compute the free energy, related to
the pressure via:

p = −F = −Veff = − (V0 + V1-loop + VT )

From the pressure, other thermodynamic quantities follow:

w = T
∂p

∂T
, e = w − p, c2

s = ∂p

∂e

Matching conditions: v+v− = p+ − p−
e+ − e−

,
v+

v−
= e− + p+

e+ + p−
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Latent heat

Manipulating the matching conditions lead to

αϑ = Dϑ

3w+

where ϑ is a generalisation of the

Trace anomaly : T µ
µ = e− 3p

that is nothing but the latent heat (L)

L > 0 exothermic PT
L < 0 endothermic PT
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Hydrodynamic description (L > 0)

wall motion plasma motion
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Hydrodynamic description (L < 0)

wall motion plasma motion
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Supercooling vs
Superheating
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Inverse PTs while cooling?

Yes ... but SUSY! (proof of principle)

O’Raifeartaigh Model: SUSY breaking field X + Φ1,2 and Φ̃1,2 mediator fields

W = −FX + λXΦ1Φ̃2 + m(Φ1Φ̃1 + Φ2Φ̃2)

where
√

F SUSY breaking scale. The model has a U(1) R−symmetry.

Peculiar thermal history: origin is global minimum both
at T = 0 and T →∞.
There is a R−symmetry breaking PT while cooling that
can be inverse.

m/
√

F = 2
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Inverse PTs while heating?

Toy Model: VT (ϕ) = a0T 4 + a1ϕT 3 + a2

2 ϕ2T 2 + a3

3 ϕ3T + a4

4 ϕ4 T→∞−→ T 4f(φ) (scale invariant)

∃ two minima ∆ ≡ a2
3 − 4a2a4 > 0

origin is global minimum 2a2a4 > ∆− a3
√

∆
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🚀
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Inverse PTs while heating?

Instability at lower temperatures: a2 → a2(T ) = a2 −M2/T 2

T0 = M
√

a2
, Tc = M

√
a2

(
1− 2

9
a2

3
a2a4

)−1/2

, TSP = M
√

a2

(
1− 1

4
a2

3
a2a4

)−1/2
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Inverse PTs while heating?

Answer: Yes! Natural place for inverse...

1 2 3 4 5 6

Tc/T0

10−1

100
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103

T
n
/T

c

T←n > TSP

T→n < T0

α←
θ̄
< 0

α→
θ̄
> 0

maximal
superheating

but hard to reheat the whole Universe!
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Conclusions

1 Difference between direct and inverse PTs from the hydrodynamical point of view.

2 In direct PTs the wall pushes the plasma and (part of) the vacuum energy is converted in
kinetic energy.

3 In inverse PTs the bubble sucks the plasma into it consequently pushing the wall.

4 Inverse PTs with both supercooling or superheating of the Universe, but hard to realize.

Outlooks:
1 Distinguish Direct/Inverse from GWs spectra using SoundShellModel (see Eric Madge’s talk)
2 Hard to reheat the whole Universe ... what about a compact system?
3 What does change at finite chemical potential?
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Thanks for
your attention!

False
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Backup
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Sprectrum of the SUSY model
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More on thermal history
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Matching conditions and possible solutions

v+v− = p+ − p−
e+ − e−

,
v+

v−
= e− + p+

e+ + p−

where p = −Veff(T ), w = T
∂p

∂T
and

e = w − p.

Direct/Inverse: αϑ ≷ 0

αϑ = 1
3w+(T+)

(
De(T+)− δe

δp
(T+, T−)Dp(T+)

)
Df = f+(T+) − f−(T+) and

δf = f−(T+) − f−(T−).
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Full numerical fluid profiles
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Overlap in the hybrid corner
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Inverse PTs while heating?

Toy Model: VT (ϕ) = a0T 4 + a1ϕT 3 + a2

2 ϕ2T 2 + a3

3 ϕ3T + a4

4 ϕ4 T→∞−→ T 4f(φ) (scale invariant)

Example for O(N) scale inv. sector:

VS = λmix

2 ϕ2
N∑

i=1
SiSi + λ0

4! ϕ4 + λS

4

(∑
i

SiSi

)2
,

Perturbativity: λ̄ ≡ λmix
√

N ,

16π2
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a0 = −π2

90 N, a1 = 0 , a2 = N
λmix

12 , a3 = −N
λ

3/2
mix
4π

, a4 = λ0

6 −N
λ2

mix
16π2 ℓ ,

where ℓ ≡ log
(
λmixϕ2/(T 2cB)

)
. Works for λ̄ ≈ 0.015 and N ≈ 250.
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Inverse PTs while heating?

Transition while heating at T = T←,h
n

f

φ∗(T )

T0

Tc

T←, hn

Tmax

T→, cn
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Note. ←: transition towards the origin →: transition away from the origin
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Inverse PTs while heating?

Transition while cooling at T = T←,c
n

f

φ∗(T )
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Self-similar solutions (dynamical evolution)

0.50 0.55 0.60 0.65 0.70 0.75 0.80

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

Thanks to Isak Stomberg!



27/17

BAG Equation of State (EoS)

ϵ+ = ϵ, ϵ− = 0 ϵ+ = 0, ϵ− = ϵ
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Thermodynamic Quantities

Once the microphysics is specified (i.e., a model is chosen), we can compute the free energy, related to
the pressure via:

p = −F = −Veff = − (V0 + V1-loop + VT )

From the pressure, other thermodynamic quantities follow:

w = T
∂p

∂T
, e = w − p, c2

s = ∂p

∂e

Different levels of approximation can be used:

1 Bag EOS: p± = c2
sa±T 4

± − ϵ± with constant c2
s = 1

3 .

2 µν-model: p± = c2
s,±a±T

ν±
± − ϵ±, where ν± = 1 + 1/c2

s,± and ν− = µ, ν+ = ν.

3 Full model: p± = −F(ϕ±), with cs,±(T ) derived from the full free energy.
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Energy budget & efficiency
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Energy budget of PTs

w(ξ) = w(ξ0) exp
[∫ v(ξ)

v(ξ0)

(
1
c2

s

+ 1
)

γ2(v)µ(ξ(v), v) dv

]

Energy budget (direct): ξ3
w

3 ϵ︸︷︷︸
vacuum energy

+ 3
4

∫
wN ξ2dξ︸ ︷︷ ︸

initial thermal energy

=
∫

γ2v2wξ2dξ︸ ︷︷ ︸
fluid motion

+ 3
4

∫
wξ2dξ︸ ︷︷ ︸

final thermal energy

Energy budget (inverse): 3
4

∫
wN ξ2dξ︸ ︷︷ ︸

initial thermal energy

= ξ3
w

3 ϵ︸︷︷︸
vacuum energy

+
∫

γ2v2wξ2dξ︸ ︷︷ ︸
fluid motion

+ 3
4

∫
wξ2dξ︸ ︷︷ ︸

final thermal energy

Initial energy will be in part converted in kinetic bulk motion!
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Efficiency factors

ρkin

ρtot

∣∣∣∣
direct

≡ κdirect
αN

1 + αN
, κdirect = 3

ϵξ3
w

∫
γ2v2wξ2dξ
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inverse

≡ κinverse ≡
4
v̄3

∫
ξ2dξ v2γ2 w

wN
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Types of solitions (detailed)

Types of discontinuities for cosmological direct phase transitions
Detonations
p+ < p−, v+ > v−

Deflagrations
p+ > p−, v+ < v−

Weak v+ > cs, v− > cs Physical v+ < cs, v− < cs Physical
Chapman-Jouguet v+ > cs, v− = cs Physical v+ < cs, v− = cs Physical
Strong v+ > cs, v− < cs Forbidden v+ < cs, v− > cs Unstable

Types of discontinuities for cosmological inverse phase transitions
Inverse Detonations
(p+ < p−, v+ > v−)

Inverse Deflagrations
(p+ > p−, v+ < v−)

Weak v+ < cs, v− < cs Physical v+ > cs, v− > cs Physical
Chapman-Jouguet v+ = cs, v− < cs Physical v+ = cs, v− > cs Physical
Strong v+ > cs, v− < cs Forbidden v+ < cs, v− > cs Unstable



33/17

Impossibility of strong solutions

Strong detonations: velocity has to be zero
at the centre of the bubble and very far away
from the wall, and having v > 0 translates
into

µ2

c2
s

− 1 > 0 , v− > cs

so detonations with v− < cs are fordibben.

Strong deflagration:
unstable wrt perturbations
entropy decreases
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Evolution of quantities across the wall (direct)
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Evolution of quantities across the wall (inverse)
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