CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

DESY THEORY WORKSHOP

## SYNERGIES TOWARDS THE FUTURE STANDARD MODEL

HELMHOLTZ

23 – 26 September 2025 DESY Hamburg, Germany



#### Inverse phase transitions

aka False Vacuum Cleaners

#### IFT Madrid

Giulio Barni giulio.barni@ift.csic.es

based on

JCAP 10 (2024) 042, 2503.01951 and 2510.xxxxx with Simone Blasi, Miguel Vanvlasselaer and Eric Madge

2508.08362 with *Andrea Tesi* 





#### Outline

• FOPTs: direct vs inverse

Hydrodynamic description

Supercooling vs Superheating

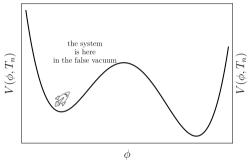


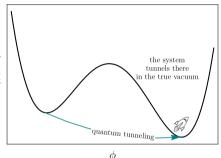


Sketch of an Inverse PT

2/17

Let us consider a system described by the scalar potential  $V(\phi,T_n)$ 





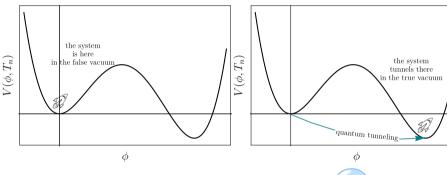
Tunneling decay rate of the false vacuum

 $\Gamma \sim Ae^{-S_E},$  Euclidean action

 $S_{E}$  computed on the sol. of the EOMs



Let us consider a system described by the scalar potential  $V(\phi,T_n)$ 



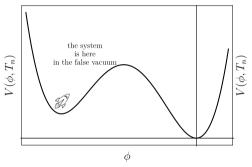
Tunneling decay rate of the false vacuum

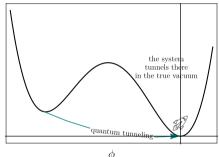
 $\Gamma \sim A e^{-S_E},$  Euclidean action

 $S_{E}$  computed on the sol. of the EOMs



Let us consider a system described by the scalar potential  $V(\phi,T_n)$ 





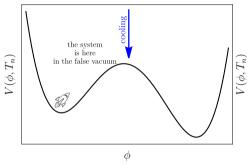
Tunneling decay rate of the false vacuum

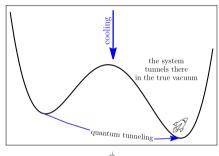
 $\Gamma \sim A e^{-S_E},$  Euclidean action

 $S_{E}$  computed on the sol. of the EOMs



Let us consider a system described by the scalar potential  $V(\phi,T_n)$ 





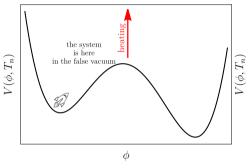
Tunneling decay rate of the false vacuum

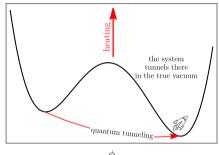
 $\Gamma \sim Ae^{-S_E},$  Euclidean action

 $S_E$  computed on the sol. of the EOMs



Let us consider a system described by the scalar potential  $V(\phi,T_n)$ 





Tunneling decay rate of the false vacuum

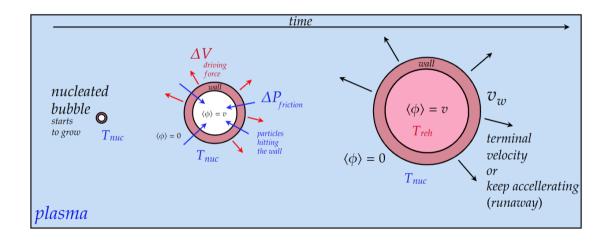
 $\Gamma \sim A e^{-S_E},$  Euclidean action

 $S_{E}$  computed on the sol. of the EOMs



## How?

#### FOPTs: How?



#### Hydrodynamic description

Coupled system of the scalar background and the plasma

$$T^{\mu\nu} = T^{\mu\nu}_{\phi} + T^{\mu\nu}_{p}, \qquad \begin{cases} T^{\mu\nu}_{\phi} = \partial^{\mu}\phi\partial^{\nu}\phi - g^{\mu\nu} \left[ \frac{1}{2} (\partial\phi)^{2} - V(\phi) \right] \\ T^{\mu\nu}_{p} = (e+p)u^{\mu}u^{\nu} - p g^{\mu\nu} \end{cases}$$

#### Hydrodynamic description

Coupled system of the scalar background and the plasma

$$T^{\mu\nu} = T^{\mu\nu}_{\phi} + T^{\mu\nu}_{p}, \qquad \begin{cases} T^{\mu\nu}_{\phi} = \partial^{\mu}\phi\partial^{\nu}\phi - g^{\mu\nu} \left[ \frac{1}{2} (\partial\phi)^{2} - V(\phi) \right] \\ T^{\mu\nu}_{p} = (e+p)u^{\mu}u^{\nu} - p g^{\mu\nu} \end{cases}$$

Energy conservation: 
$$\nabla_{\mu}T^{\mu\nu}=0$$
  $\rightarrow$  {Continuity eq. {Euler eq.}} (for continuous waves)

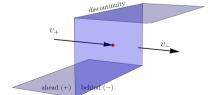
#### Hydrodynamic description

Coupled system of the scalar background and the plasma

$$T^{\mu\nu} = T^{\mu\nu}_{\phi} + T^{\mu\nu}_{p}, \qquad \begin{cases} T^{\mu\nu}_{\phi} = \partial^{\mu}\phi\partial^{\nu}\phi - g^{\mu\nu} \left[ \frac{1}{2}(\partial\phi)^{2} - V(\phi) \right] \\ T^{\mu\nu}_{p} = (e+p)u^{\mu}u^{\nu} - pg^{\mu\nu} \end{cases}$$

Energy conservation: 
$$\nabla_{\mu}T^{\mu\nu}=0 \qquad \rightarrow \qquad \begin{cases} \mbox{Continuity eq.} \\ \mbox{Euler eq.} \end{cases}$$
 (for continuous waves)

Hydrodynamical flows can develop discontinuities such as shocks or reaction fronts



matching conditions across discontinuities  $(\pm \text{ bubble wall frame})$ 

$$w_+\gamma_+^2v_+ = w_-\gamma_-^2v_- \\ w_+\gamma_+^2v_+^2 + p_+ = w_-\gamma_-^2v_-^2 + p_- \\ \text{where } w=e+p=\text{enthalpy}$$

#### Thermodynamics

Once the microphysics is specified (i.e., a model is chosen), we can compute the free energy, related to the pressure via:

$$p = -\mathcal{F} = -V_{\text{eff}} = -(V_0 + V_{1\text{-loop}} + V_T)$$

From the pressure, other thermodynamic quantities follow:

$$w = T \frac{\partial p}{\partial T},$$
  $e = w - p,$   $c_s^2 = \frac{\partial p}{\partial e}$ 

Matching conditions: 
$$v_+v_- = \frac{p_+ - p_-}{e_+ - e_-} \; , \qquad \frac{v_+}{v_-} = \frac{e_- + p_+}{e_+ + p_-}$$

#### Latent heat

Manipulating the matching conditions lead to

$$\alpha_{\vartheta} = \frac{D\vartheta}{3w_{+}}$$

where  $\boldsymbol{\vartheta}$  is a generalisation of the

Trace anomaly : 
$$T_{\mu}^{\mu}=e-3p$$

that is nothing but the latent heat (L)

$$L>0$$
 exothermic PT  $L<0$  endothermic PT

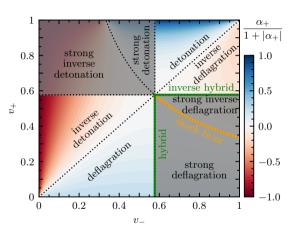
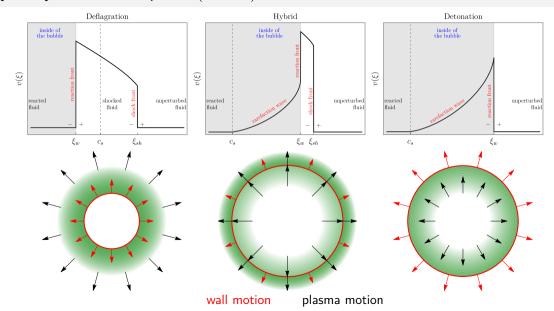


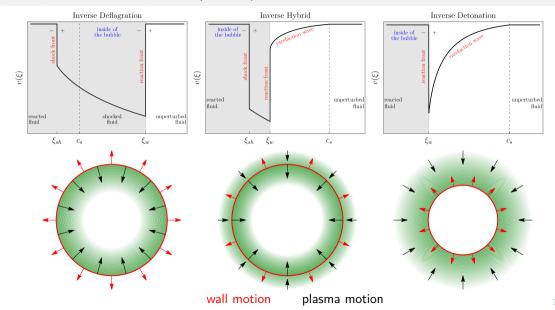
Figure: Using bag EoS  $\alpha_{\vartheta} \equiv \alpha_+ = 4\epsilon/3w_+$ 

## Hydrodynamic description (L > 0)



9/17

### Hydrodynamic description (L < 0)





# Supercooling vs Superheating



# Inverse PTs while cooling?

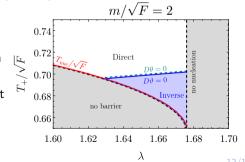
Yes ... but SUSY! (proof of principle)

**O'Raifeartaigh Model**: SUSY breaking field  $X+\Phi_{1,2}$  and  $\tilde{\Phi}_{1,2}$  mediator fields

$$W = -FX + \lambda X \Phi_1 \tilde{\Phi}_2 + m(\Phi_1 \tilde{\Phi}_1 + \Phi_2 \tilde{\Phi}_2)$$

where  $\sqrt{F}$  SUSY breaking scale. The model has a U(1) R-symmetry.

- Peculiar thermal history: origin is global minimum both  $\overline{\text{at } T = 0 \text{ and } T \to \infty}$ .
- There is a R-symmetry breaking PT while cooling that can be inverse.

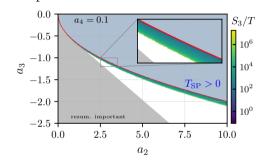


## Inverse PTs while heating?



**Toy Model**:  $V_T(\phi) = a_0 T^4 + a_1 \phi T^3 + \frac{a_2}{2} \phi^2 T^2 + \frac{a_3}{3} \phi^3 T + \frac{a_4}{4} \phi^4 \stackrel{T \to \infty}{\longrightarrow} T^4 f(\varphi)$  (scale invariant)

- ullet  $\exists$  two minima  $\Delta \equiv a_3^2 4a_2a_4 > 0$
- ullet origin is global minimum  $2a_2a_4>\Delta-a_3\sqrt{\Delta}$

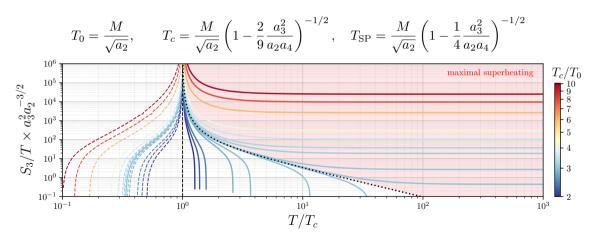




## Inverse PTs while heating? 🔌



Instability at lower temperatures:  $a_2 \rightarrow a_2(T) = a_2 - M^2/T^2$ 



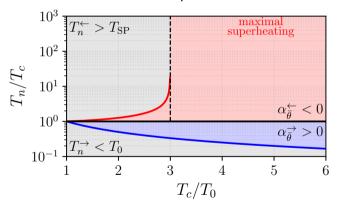
 $\textbf{Transitions} \rightarrow$ 

Transitions  $\leftarrow$ 

## Inverse PTs while heating?



Answer: Yes! Natural place for inverse...



but hard to reheat the whole Universe!

#### Conclusions

- Difference between direct and inverse PTs from the hydrodynamical point of view.
- In direct PTs the wall pushes the plasma and (part of) the vacuum energy is converted in kinetic energy.
- In *inverse* PTs the bubble **sucks the plasma** into it consequently pushing the wall.
- Inverse PTs with both supercooling or superheating of the Universe, but hard to realize.

#### Outlooks:

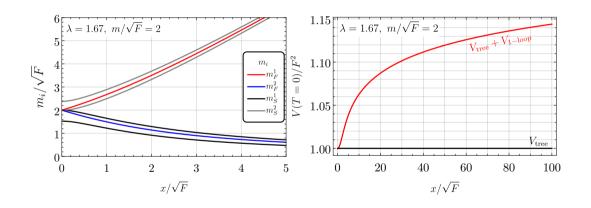
- Distinguish Direct/Inverse from GWs spectra using **SoundShellModel** (see **Eric Madge**'s talk)
- Hard to reheat the whole Universe ... what about a compact system?
- What does change at finite chemical potential?

Thanks for your attention!

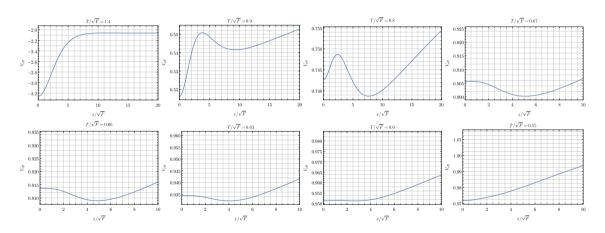


# Backup

## Sprectrum of the SUSY model

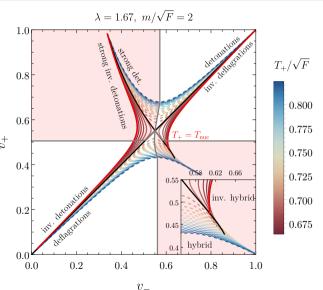


#### More on thermal history

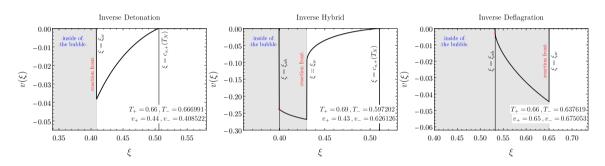


#### Matching conditions and possible solutions

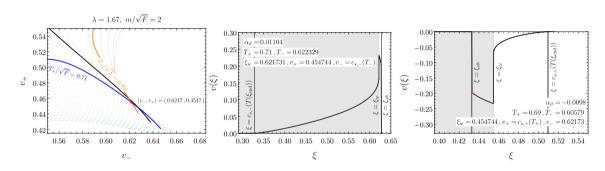
$$\begin{split} v_+v_- &= \frac{p_+ - p_-}{e_+ - e_-} \;, \qquad \frac{v_+}{v_-} = \frac{e_- + p_+}{e_+ + p_-} \\ \text{where } p &= -V_{\text{eff}}(T), \; w = T \frac{\partial p}{\partial T} \; \text{and} \\ &e = w - p. \end{split}$$
 
$$\begin{aligned} \text{Direct/Inverse:} \qquad &\alpha_\vartheta & \geqslant 0 \\ \alpha_\vartheta &= \frac{1}{3w_+(T_+)} \left( De(T_+) - \frac{\delta e}{\delta p}(T_+, T_-) Dp(T_+) \right) \\ Df &= f_+(T_+) - f_-(T_+) \; \text{and} \\ &\delta f = f_-(T_+) - f_-(T_-). \end{aligned}$$



#### Full numerical fluid profiles



#### Overlap in the hybrid corner



## Inverse PTs while heating? 실



**Toy Model**:  $V_T(\phi) = a_0 T^4 + a_1 \phi T^3 + \frac{a_2}{2} \phi^2 T^2 + \frac{a_3}{3} \phi^3 T + \frac{a_4}{4} \phi^4 \stackrel{T \to \infty}{\longrightarrow} T^4 f(\varphi)$  (scale invariant)

ullet Example for  ${\rm O}(N)$  scale inv. sector:

$$V_{S} = \frac{\lambda_{\text{mix}}}{2} \phi^{2} \sum_{i=1}^{N} S_{i} S_{i} + \frac{\lambda_{0}}{4!} \phi^{4} + \frac{\lambda_{S}}{4} \left(\sum_{i} S_{i} S_{i}\right)^{2}, \quad \stackrel{\circ}{\approx} \frac{-1.0}{-1.5}$$

• Perturbativity:  $\bar{\lambda} \equiv \frac{\lambda_{\rm mix} \sqrt{N}}{16\pi^2}$ 

$$\begin{array}{c} 0.0 \\ -0.5 \\ -1.0 \\ -1.5 \\ -2.0 \\ -2.5 \\ 0.0 \\ 2.5 \\ \end{array} \begin{array}{c} S_3/T \\ 10^6 \\ 10^4 \\ 10^2 \\ 10^0 \\ \end{array}$$

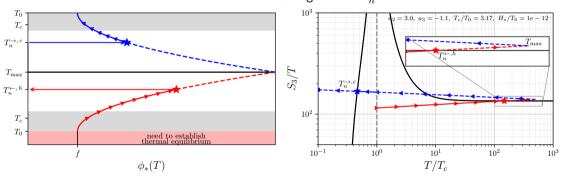
$$a_0 = -\frac{\pi^2}{90}N, \quad a_1 = 0, \quad a_2 = N\frac{\lambda_{\text{mix}}}{12}, a_3 = -N\frac{\lambda_{\text{mix}}^{3/2}}{4\pi}, \quad a_4 = \frac{\lambda_0}{6} - N\frac{\lambda_{\text{mix}}^2}{16\pi^2}\ell,$$

where  $\ell \equiv \log(\lambda_{\rm mix}\phi^2/(T^2c_B))$ . Works for  $\bar{\lambda} \approx 0.015$  and  $N \approx 250$ .

## Inverse PTs while heating?



#### Transition while heating at $T = T_n^{\leftarrow,h}$



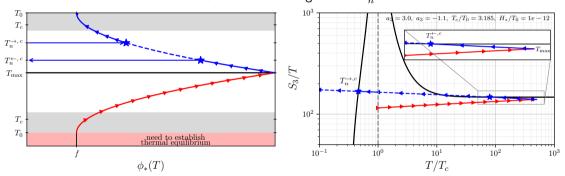
**Note**. ←: transition towards the origin

 $\rightarrow$ : transition away from the origin

## Inverse PTs while heating?



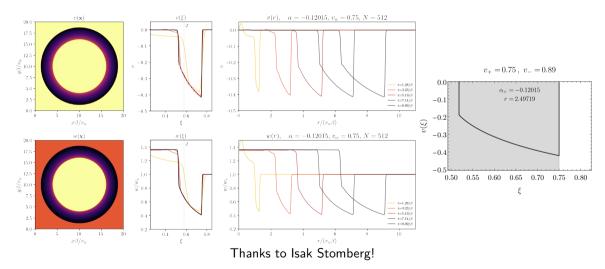
Transition while cooling at  $T = T_n^{\leftarrow,c}$ 



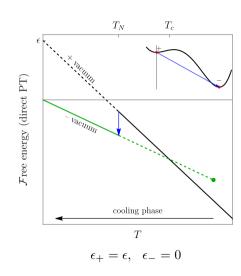
**Note**. ←: transition towards the origin

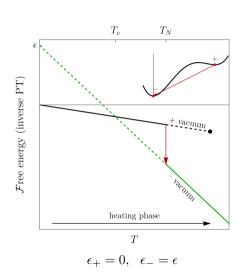
 $\rightarrow$ : transition away from the origin

### Self-similar solutions (dynamical evolution)



## BAG Equation of State (EoS)





Once the microphysics is specified (i.e., a model is chosen), we can compute the free energy, related to the pressure via:

$$p = -\mathcal{F} = -V_{\text{eff}} = -\left(V_0 + V_{1\text{-loop}} + V_T\right)$$

From the pressure, other thermodynamic quantities follow:

$$w = T \frac{\partial p}{\partial T},$$
  $e = w - p,$   $c_s^2 = \frac{\partial p}{\partial e}$ 

Once the microphysics is specified (i.e., a model is chosen), we can compute the free energy, related to the pressure via:

$$p = -\mathcal{F} = -V_{\text{eff}} = -\left(V_0 + V_{1\text{-loop}} + V_T\right)$$

From the pressure, other thermodynamic quantities follow:

$$w = T \frac{\partial p}{\partial T},$$
  $e = w - p,$   $c_s^2 = \frac{\partial p}{\partial e}$ 

Different levels of approximation can be used:

Once the microphysics is specified (i.e., a model is chosen), we can compute the free energy, related to the pressure via:

$$p = -\mathcal{F} = -V_{\text{eff}} = -(V_0 + V_{1\text{-loop}} + V_T)$$

From the pressure, other thermodynamic quantities follow:

$$w = T \frac{\partial p}{\partial T},$$
  $e = w - p,$   $c_s^2 = \frac{\partial p}{\partial e}$ 

Different levels of approximation can be used:

- **1** Bag EOS:  $p_{\pm}=c_s^2a_{\pm}T_{\pm}^4-\epsilon_{\pm}$  with constant  $c_s^2=\frac{1}{3}$ .
- **②**  $\mu \nu$ -model:  $p_{\pm} = c_{s,\pm}^2 a_{\pm} T_{\pm}^{\nu_{\pm}} \epsilon_{\pm}$ , where  $\nu_{\pm} = 1 + 1/c_{s,\pm}^2$  and  $\nu_{-} = \mu$ ,  $\nu_{+} = \nu$ .

Once the microphysics is specified (i.e., a model is chosen), we can compute the free energy, related to the pressure via:

$$p = -\mathcal{F} = -V_{\text{eff}} = -(V_0 + V_{1\text{-loop}} + V_T)$$

From the pressure, other thermodynamic quantities follow:

$$w = T \frac{\partial p}{\partial T},$$
  $e = w - p,$   $c_s^2 = \frac{\partial p}{\partial e}$ 

Different levels of approximation can be used:

- **4** Bag EOS:  $p_{\pm}=c_s^2a_{\pm}T_{\pm}^4-\epsilon_{\pm}$  with constant  $c_s^2=\frac{1}{3}$ .
- **2**  $\mu \nu$ -model:  $p_{\pm} = c_{s,\pm}^2 a_{\pm} T_{\pm}^{\nu_{\pm}} \epsilon_{\pm}$ , where  $\nu_{\pm} = 1 + 1/c_{s,\pm}^2$  and  $\nu_{-} = \mu$ ,  $\nu_{+} = \nu$ .
- **§ Full model**:  $p_{\pm} = -\mathcal{F}(\phi_{\pm})$ , with  $c_{s,\pm}(T)$  derived from the full free energy.

# Energy budget & efficiency

#### Energy budget of PTs

$$w(\xi) = w(\xi_0) \exp \left[ \int_{v(\xi_0)}^{v(\xi)} \left( \frac{1}{c_s^2} + 1 \right) \gamma^2(v) \mu(\xi(v), v) \ dv \right]$$

Energy budget (direct): 
$$\underbrace{\frac{\xi_3^w}{3}\epsilon}_{\text{vacuum energy}} + \underbrace{\frac{3}{4}\int w_N\xi^2 d\xi}_{\text{initial thermal energy}} = \underbrace{\int \gamma^2 v^2 w\xi^2 d\xi}_{\text{fluid motion}} + \underbrace{\frac{3}{4}\int w\xi^2 d\xi}_{\text{final thermal energy}}$$

#### Energy budget of PTs

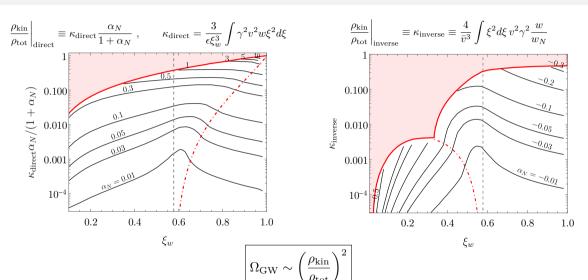
$$w(\xi) = w(\xi_0) \exp \left[ \int_{v(\xi_0)}^{v(\xi)} \left( \frac{1}{c_s^2} + 1 \right) \gamma^2(v) \mu(\xi(v), v) \ dv \right]$$

Energy budget (direct): 
$$\underbrace{\frac{\xi_w^3}{3}\epsilon}_{\text{vacuum energy}} + \underbrace{\frac{3}{4}\int w_N\xi^2 d\xi}_{\text{initial thermal energy}} = \underbrace{\int \gamma^2 v^2 w \xi^2 d\xi}_{\text{fluid motion}} + \underbrace{\frac{3}{4}\int w \xi^2 d\xi}_{\text{final thermal energy}}$$

Energy budget (inverse): 
$$\underbrace{\frac{3}{4}\int w_N\xi^2d\xi}_{\text{initial thermal energy}} = \underbrace{\frac{\xi_w^3}{3}\epsilon}_{\text{vacuum energy}} + \underbrace{\int \gamma^2v^2w\xi^2d\xi}_{\text{fluid motion}} + \underbrace{\frac{3}{4}\int w\xi^2d\xi}_{\text{final thermal energy}}$$

Initial energy will be in part converted in kinetic bulk motion!

## Efficiency factors



## Types of solitions (detailed)

| Types of discontinuities for cosmological direct phase transitions |                                |                               |
|--------------------------------------------------------------------|--------------------------------|-------------------------------|
|                                                                    | Detonations                    | Deflagrations                 |
|                                                                    | $p_+ < p, v_+ > v$             | $p_+ > p, v_+ < v$            |
| Weak                                                               | $v_+>c_s,v>c_s$ Physical       | $v_+ < c_s, v < c_s$ Physical |
| Chapman-Jouguet                                                    | $v_+>c_s, v=c_s$ Physical      | $v_+ < c_s, v = c_s$ Physical |
| Strong                                                             | $v_+ > c_s, v < c_s$ Forbidden | $v_+ < c_s, v > c_s$ Unstable |

| Types of discontinuities for cosmological inverse phase transitions |                                |                               |
|---------------------------------------------------------------------|--------------------------------|-------------------------------|
|                                                                     | Inverse Detonations            | Inverse Deflagrations         |
|                                                                     | $(p_+ < p, v_+ > v)$           | $(p_+ > p, v_+ < v)$          |
| Weak                                                                | $v_+ < c_s, v < c_s$ Physical  | $v_+>c_s,v>c_s$ Physical      |
| Chapman-Jouguet                                                     | $v_+ = c_s, v < c_s$ Physical  | $v_+ = c_s, v > c_s$ Physical |
| Strong                                                              | $v_+ > c_s, v < c_s$ Forbidden | $v_+ < c_s, v > c_s$ Unstable |

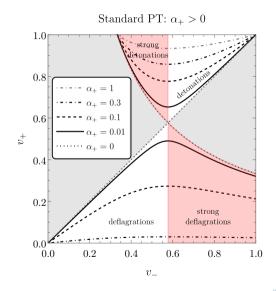
#### Impossibility of strong solutions

ullet Strong detonations: velocity has to be zero at the centre of the bubble and very far away from the wall, and having v>0 translates into

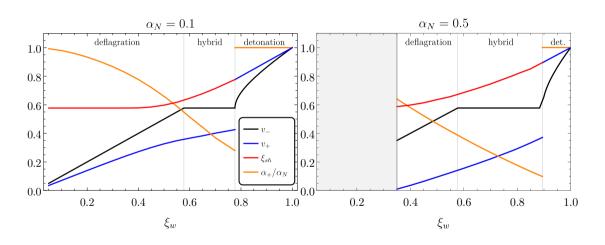
$$\frac{\mu^2}{c_s^2} - 1 > 0 , \qquad v_- > c_s$$

so detonations with  $v_- < c_s$  are fordibben.

- Strong deflagration:
  - unstable wrt perturbations
  - entropy decreases



## Evolution of quantities across the wall (direct)



## Evolution of quantities across the wall (inverse)

