ANeff from SGWB: PTA & CMB

Amresh Verma

Ph.D. Student, Ariel University

w/ Ido Ben-Dayan and Utkarsh Kumar

DESY Theory Workshop, 2025

NANOGrav Result

- ⇒ The NANOGrav 15-year data set has provided **statistically significant** evidence for a **gravitational-wave background**.
- ⇒ The data set has revealed evidence for Hellings-Downs spatial correlations in the timing residuals for an ensemble of 67 pulsars.

Gabriella Agazie et al, 2023 ApJL 951 L8

Adeela Afzal et al, 2023 ApJL 951 L11

Sources?

Astrophysical

1. SMBHB?

- Inspiralling phase can explain the observed signal
- NANOGrav measures 10 time higher amplitude than the existing BH population models predict (Sato-Polito et al.)

Cosmological

- 1. Inflationary
- 2. Phase Transitions
- 3. Non-Standard Reheating
- 4. More.....

Models

- ⇒ Blue tilted Inflation
- ⇒ Non-Standard Reheating, wrh
- \Rightarrow Running tensor tilt, $n_t(f) = n_t(f_{yr}) + rac{lpha_t}{2} \log \left(rac{f}{f_{yr}}
 ight)$
- ⇒ Scalar Induced Gravitational Waves

$$\mathcal{P}_{\mathcal{R}}(k) = A_s \left(\frac{k}{k_0}\right)^{n_s(k_0) - 1 + \frac{\alpha(k_0)}{2} \ln \frac{k}{k_0} + \frac{\beta(k_0)}{6} \ln^2 \frac{k}{k_0}}$$

- ⇒ Phase Transition Bubble & Sound
- **⇒ Metastable Cosmic Strings**

Tools Used:

- 1. PTArcade (Mitridate, Andrea, et al.)
- 2. GetDist

Neff

$$\Delta N_{eff} \approx 1.8 \times 10^5 \int_{f_{min}}^{f_{max}} df \frac{\Omega_{GW}(f) h^2}{f}$$

⇒ Present: f_{max} = 60 nHz

⇒ Potential to reach: f_{max} ~ µHz

⇒ If PTA is **cosmological**, we have a **measurement** =>Strong constraints.

See: A. Brazier et al.

CMB

P18:
$$\sigma(N_{\text{eff}}) = 0.19$$

SO:
$$\sigma(N_{\text{eff}}) = 0.045$$

S4:
$$\sigma(N_{\rm eff}) = 0.027$$

$$N_{\rm eff} = 2.89 \pm 0.19$$

Planck18: (TT + TE + EE + lowE + Lensing)

Example

Inflationary:

$$\Omega_{\rm GW}^{\rm prim,i}(f) = \frac{r A_s \tilde{\gamma}}{24} \left(\frac{k}{k_*}\right)^{n_t}$$

$$\Delta N_{eff} \approx 1.8 \times 10^5 \int_{f_{min}}^{f_{max}} df \frac{\Omega_{GW}(f) h^2}{f}$$

⇒ Present: f_{max} = 60 nHz

⇒ Potential to reach: f_{max} ~ µHz

Current Measurement

Future Prediction

3 Sigma Detection

Model	$\log_{10} \Delta N_{ ext{eff}}$				
	$f_{ m max}=6 imes10^{-8}~{ m Hz}$	$f_{\rm max} = 1 \times 10^{-6} \; \rm Hz$	$\#\sigma_{\mathbf{present}}$	$\#\sigma$ so	$f_{3\sigma_{\mathbf{SO}}}$ (Hz)
Standard	$-2.72^{+0.27}_{-0.32}$	$-0.54^{+0.66}_{-0.76}$	1.52	6.41	6.65×10^{-7}
Reheating	-3.1 ± 1.5	$-0.80^{+1.3}_{-1.5}$	0.83	3.52	9.40×10^{-7}
Running	-2.00 ± 0.31	$-0.13^{+0.86}_{-0.97}$	3.90	16.4	3.15×10^{-7}
Sound	$-3.28^{+0.28}_{-0.32}$	$-3.26^{+0.28}_{-0.33}$	_	-	_
Bubble	-3.53 ± 0.38	$-3.35^{+0.41}_{-0.49}$	_	-	_
SIGW	$-3.894^{+0.031}_{-0.035}$	$2.336^{+0.231}_{-0.153}$	> 1000	> 1000	2.60×10^{-7}
Cosmic String	$-1.78^{+0.098}_{-0.210}$	$-0.53^{+0.93}_{-0.33}$	1.55	6.54	3.50×10^{-7}

⇒ PT do not generate an observable Neff contribution.

⇒ Every other models are expected to be detected or ruled out by CMB.

⇒ f_{max} ~ O(10^-7) Hz seems sufficient

Summary

⇒ If the PTA signal is of cosmological origin, it is a significant deviation from standard Cosmology, and implies New Physics.

⇒ All models except Phase Transition are expected to be detected or ruled out by CMB.

⇒ Combination of CMB, PTA (and LIGO) is highly beneficial for model selection. We expect definite results within 5-10 years.

Thank Mou