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Introduction
QCD phase diagram mostly unknown
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Reinhardt et al., arXiv:1510.03286 

Progress in gravitational wave detection

nanograv.org

Anastassopoulos et al., arXiv:1705.02290



Overview
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Birth of 
neutron star 
from core-
collapse 

supernova

I.
1st order phase 
transition from 

hadronic 
matter to 

quark-gluon 
plasma in core

II. Bubble 
nucleation 

and collisions

III.
Gravitational 
wave signal 
with O(MHz) 

frequency

Unique 
opportunity for 
high-frequency 

GW detectors to 
probe extreme 
regime of QCD



Dynamics of the Phase Transition

• Uninterrupted transition
• Quark matter bubbles expand and coalesce until transition is complete
• Strongest GW signal
• Need pressure to remain high enough as volume transitions to quark phase

• Stalled transition
• Expansion of quark matter bubbles stops before transition is complete
• GW signal is suppressed

• Smooth formation of mixed phase
• Quarks and hadrons co-exist as unordered mixture or as ‘pasta’
• Slow and smooth process produces no GW signal

GW signal depends strongly on high-density QCD dynamics!
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Neutron Star Model I
The neutron star is characterized by an equation of state (EoS).
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I.
1st order phase 
transition from 

hadronic matter 
to quark-gluon 
plasma in core

𝑝-vs-𝜇𝑏 plane:
• Critical pressure 𝑝𝑐  = intersection 

point of the hadron EoS and the 
quark EoS 

• Bubble nucleation starts at the 
nucleation pressure 𝑝𝑛 ≥ 𝑝𝑐

→ pressure, energy density, 
    phase transition strength
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Neutron Star Model II
The neutron star is characterized by an equation of state (EoS).
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I.
1st order phase 
transition from 

hadronic matter 
to quark-gluon 
plasma in core

𝑝-vs-𝑛𝑏 plane:
• Discontinuity at 𝑝𝑐  smoothed out by 

the mixed phase EoS
• A mixed phase where hadrons and 

quarks co-exist typically exists in 
neutron star models

•  𝑝 = 𝜅𝑛𝑏
Γ (slope parametrized by Γ)

crust

hadron phase
mixed phase

quark phase

→ input for TOV equations



Neutron Star Model III
• Input: Combined EoS
• Solve Tolman–Oppenheimer–Volkoff (TOV) equations
• Output: 

• Mass-radius relation (compare to observations)
• Pressure profiles (radius of the quark core)
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I.
1st order phase 
transition from 

hadronic matter 
to quark-gluon 
plasma in core

Theoretical limit (causality)

NICER data contours

GW170817 radius measurement

• Note: choice of Γ (mixed EoS) affects M-R relation 



Hydrodynamics
• Source of gravitational wave signal = sound waves 

produced by bubble collisions
• Goal of hydrodynamics code: compute bubble wall 

velocity
➢Size of bubbles
➢Efficiency factor

• Need Local Thermal Equilibrium approximation 
(accounts for vacuum energy and fluid effects, w/o 
dissipative friction forces) + entropy conservation

• Note: fluid velocity and enthalpy profiles are 
determined for an inverse phase transition.
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II. 
Bubble 

nucleation 
and 

collisions

Barni, Blasi, Vanvlasselaer, arXiv:2406.01596v2 
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Neutron Star Model:
• Pressure & energy density 

before and after PT
• Phase transition strength
• Radius of quark core

Hydrodynamics:
• Bubble wall velocity
• Size of bubbles
• Efficiency factor



Frequency of Gravitational Wave Signal
arxiv: 2210.03171

• Peak frequency ≈ 1/(size of quark bubbles)
• Rate of bubble nucleation per volume element:

• Number density of bubbles at time t:

• Define timescale of phase transition:
• Taylor expanding the exponent S(t):
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where (size of quark bubbles) = (𝑛𝑏𝑢𝑏𝑏𝑙𝑒𝑠)-1/3 

where 𝑥𝑞 is the fraction of the core that has transitioned 



Characteristic Strain
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• Peak frequency (~MHz, from size of quark bubbles)
• Energy density and pressure (from equation of state)
• Phase transition strength (from equation of state)
• Efficiency factor (from bubble dynamics)
• Time duration of the source (min. of light crossing time and shock formation time)

• Size of quark bubbles (from timescale of phase transition and bubble wall velocity)
• Numerical constant (from previous simulations)

• Characteristic strain suppressed by [volume fraction]9/8 for stalled phase transition

III.
Gravitational 
wave signal 
with O(MHz) 

frequency



Characteristic Strain
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III.
Gravitational 
wave signal 
with O(MHz) 

frequency

• Close to experimental sensitivity of 
proposed gravitational wave detectors 
→ detectable in the future!

• Unique SM source of high-frequency 
signal → don’t need exotic new physics
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Thank you!

1st order phase 
transition from 

hadronic matter 
to quark-gluon 

plasma in 
neutron star core

Gravitational 
wave signal 
with O(MHz) 

frequency
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