Searches for New Physics at the (HL-)LHC – Selected theory topics

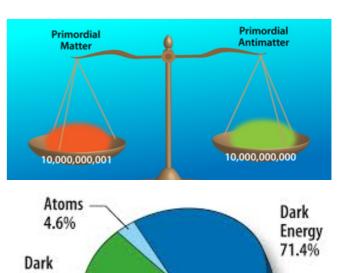
Johannes Braathen (DESY)

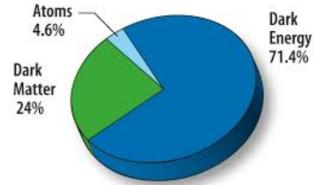
DESY Theory Workshop 2025, Hamburg, Germany | 24 September 2025

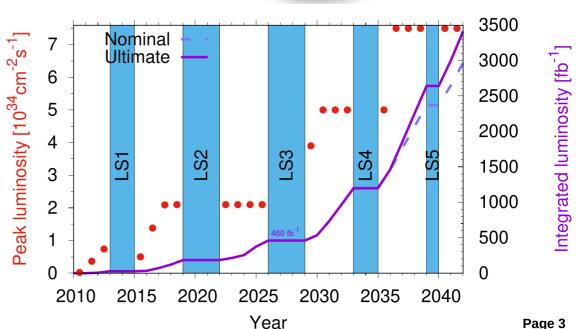
CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Outline and disclaimer


- Introduction
- Direct searches for New Physics
- BSM via precision Higgs measurements
- Di-Higgs production in BSM models


Disclaimer: the selection of what I present is of course biased by my own research interests, and there are plenty more exciting directions that I can't mention because of time!


BSM searches as of 2025

No confirmed sign of Beyond-the-Standard-Model (BSM) Physics in LHC searches yet

- However, the **motivation for BSM remains intact**:
 - → matter-antimatter asymmetry (or bayon asymmetry of the Universe, BAU)
 - → dark matter
 - → origin of electroweak symmetry breaking
 - → naturalness and hierarchy problem(s)
 - → neutrino masses
 - → strong CP-problem
 - ... and many more!
- Only ~15% of total (HL-)LHC data collected so far!

Some avenues to search for New Physics at (HL-)LHC

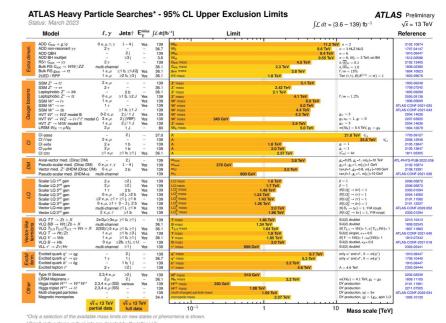
Increased luminosity

- → search for rare processes (e.g. rare decays of top quark, or of Higgs boson; di-Higgs production, etc.)
- New search ideas and strategies, and new analysis techniques (c.f. also talks of T. Vasquez Schröder and S. Lowette)
 - → consider new final states, new/forgotten channels, different regions of phase space
 - → improved data analysis, e.g. with machine learning techniques
 - $\rightarrow \sqrt{\mathcal{L}}$ scaling is at best overly conservative [Belvedere, Englert, Kogler, Spannowsky '24]

Increased precision on properties of known particles

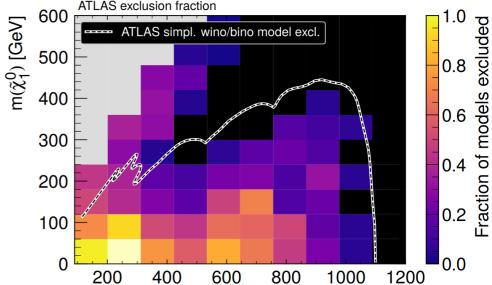
- → precision measurements programme ongoing (more later on case of Higgs boson)
- → finding a deviation from SM would give us information about scale of BSM
- > More global analyses (e.g. EFT) → see e.g. talk of E. Vryonidou

Direct searches for New Physics


DESY. Page 5

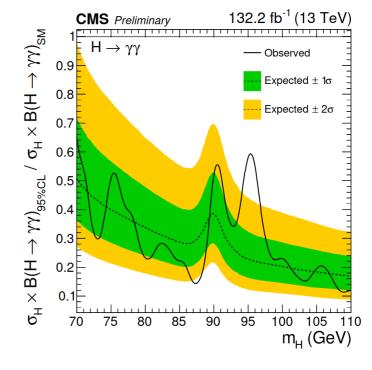
Search limits and interpretations

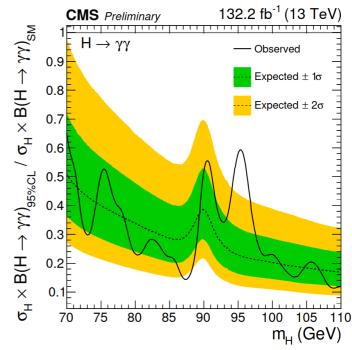
- Increasingly stringent limits on BSM states,
 - e.g. → stops/sbottoms > 1.3 TeV
 - → gluinos and 1st/2nd family squarks > 2.4 TeV
 - \rightarrow Z' > ~ 2 TeV (at least)
 - → scalar leptoquarks > 1.2 TeV

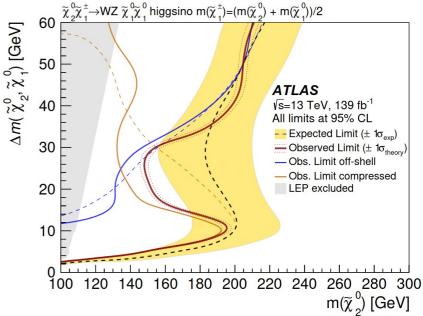

etc.

- Interpretation of searches often given in terms of simplified models/scenarios → care is then needed to draw general conclusions! (c.f. pMSSM example)
- Different approaches for (re)interpretations:
 - recasting, e.g. with MadAnalysis 5 [Conte et al. '12-'18], [Araz et al. '20, '21], CheckMATE [Drees et al. '13], [Dercks et al. '16], [Desai et al. '21], RIVET [Buckley et al. '10], [Bierlich et al. '19] with Contour [Buckley et al. '21], ColliderBit [Balázs et al. '17], [Athron et al '18] (from GAMBIT), or HackAnalysis [Goodsell '24]
 - map BSM model/scenario onto simplified model search limits
 - → e.g. SModelS [Kraml et al. '13], [Alguero et al. '21]
 - identify most sensitive BSM search channel to compare model to
 - → e.g. HiggsBounds [Bechtle et al '08-'20], [Bahl et al. '22]

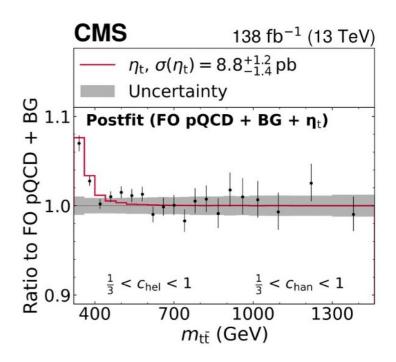
ATLAS

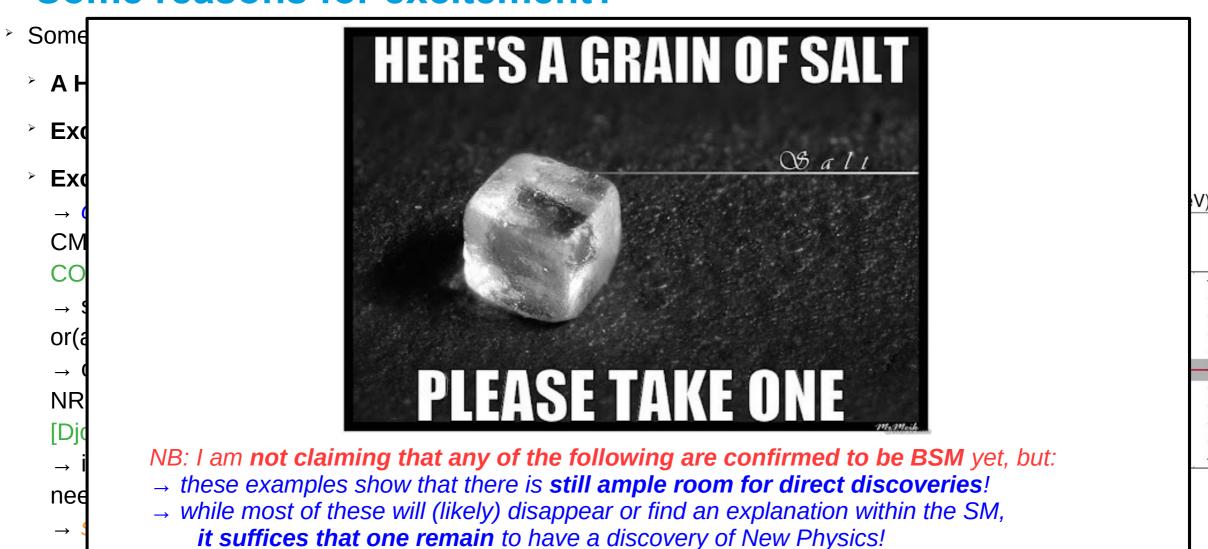

EWKino scan, $\sqrt{s} = 13 \text{ TeV}$, 140 fb^{-1}


ATLAS results for pMSSM $m(\tilde{\chi}_1^+)$ [GeV] [ATLAS 2402.01392]

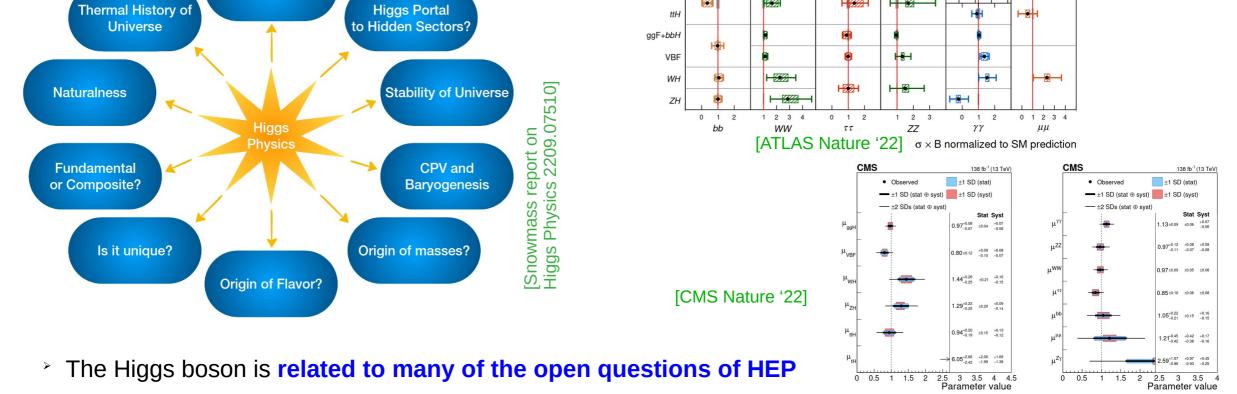

Page 6

- Some tentalising excesses worth mentioning:
 - A Higgs boson at 95 GeV?
 - \rightarrow excesses seen by ATLAS and CMS in low mass $\Phi \rightarrow \gamma \gamma$ searches
 - + CMS search for $\Phi \rightarrow \tau^+\tau^-$ + LEP excess in $\Phi \rightarrow b\overline{b}$ (debated)
 - → numerous possible BSM interpretations (w. or w/o $\tau^+\tau^-$ and $b\overline{b}$) (far too many references to fit on this slide)




- Some tentalising excesses worth mentioning:
 - A Higgs boson at 95 GeV?
 - \rightarrow excesses seen by ATLAS and CMS in low mass $\Phi \rightarrow yy$ searches
 - + CMS search for $\Phi \rightarrow \tau^+\tau^-$ + LEP excess in $\Phi \rightarrow b\overline{b}$ (debated)
 - \rightarrow numerous possible BSM interpretations (w. or w/o τ⁺τ⁻ and bb) (far too many references to fit on this slide)
 - Excesses in soft lepton and monojet searches
 - \rightarrow excesses seen by ATLAS ([ATLAS-SUSY-2018-16], [ATLAS-SUSY-2019-09]) and CMS ([CMS-SUS-18-004]) in searches for 2 or 3 soft leptons + MET
 - → recasting of ATLAS and CMS results ([ATLAS-EXOT-2018-06], [CMS-EXO-20-004]) finds corresponding excesses in searches for monojet + MET [Agin et al. '23]
 - \rightarrow interpretations possible in MSSM, NMSSM, Dirac gaugino models, with or without DM and/or h₉₅, see e.g. [Agin et al. '23, '24, '25], [Chakraborti et al. '24], [Ellwanger et al. '24], [Fuks et al. '25], [Araz et al. '25]

- Some tentalising excesses worth mentioning:
 - A Higgs boson at 95 GeV?
 - Excesses in soft lepton and monojet searches
 - > Excess at tt threshold → see talk of S. Lowette yesterday
 - \rightarrow *clear excess* above SM prediction for non-resonant tt production: CMS >> 5σ [CMS-TOP-24-007], confirmed by ATLAS [ATLAS-CONF-2025-008]
 - → signal compatible with *toponium bound state* (predicted in SM) or(and?) with *BSM pseudoscalar*
 - → only toponium (most likely, see e.g. [CMS-HIG-22-013] which uses NRQCD model from [Fuks et al. '21, '24]) or could it be both? (see [Djouadi, Ellis, Quevillon '24], [Bahl, Kumar, Weiglein '25])
 - → inclusion of precise theory predictions (c.f. [Garzelli et al '24]) needed and underway
 - → see talk of M. Garzelli on Friday



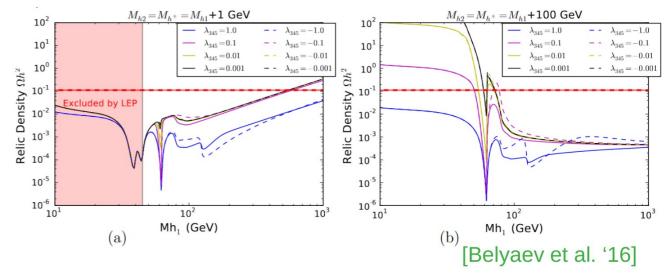
BSM searches via Higgs precision measurements

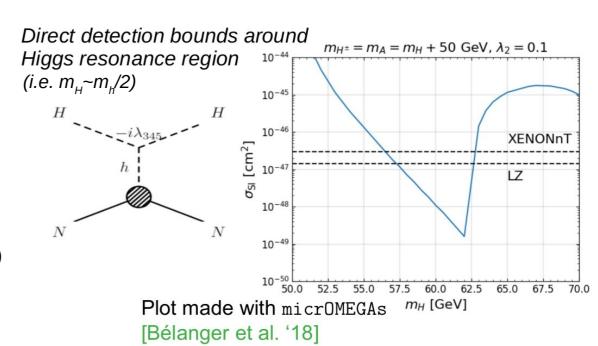
DESY. Page 11

The central role of the Higgs to search for New Physics

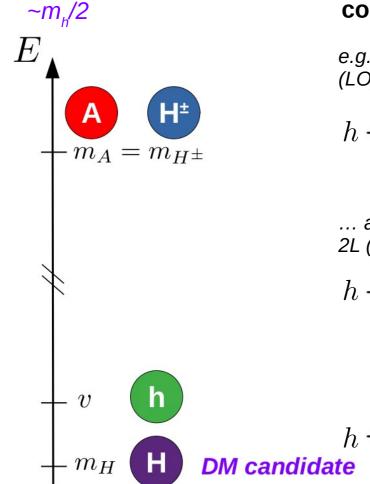
- BSM theories commonly feature extended Higgs/scalar sectors, or states that couple to the detected Higgs boson → can modify properties of h₁₂₅
- Ongoing and future programme of precision measurements of Higgs properties at (HL-)LHC, see e.g. [ATLAS Nature '22], [CMS Nature '22]
 Results in terms of κ-framework, signal strengths, STXS, EFT operators, etc. (→ c.f. talk of S. Lowette)

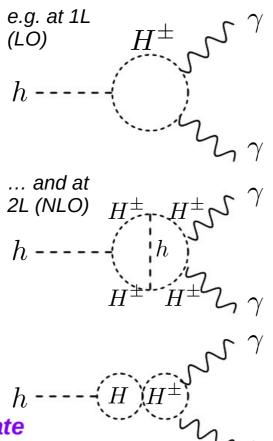
Origin of EWSB?

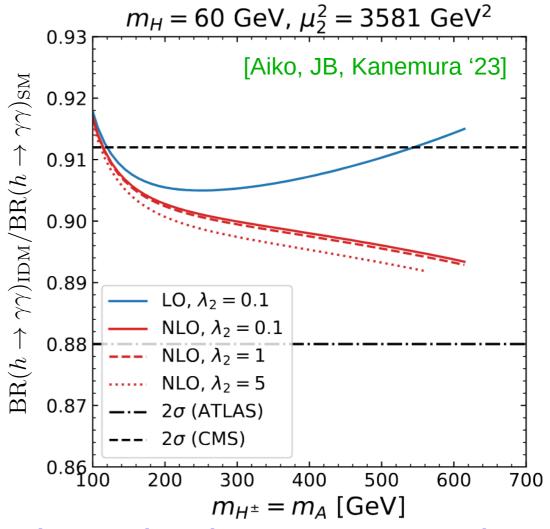

Example: dark matter in the Inert Doublet Model


Inert Doublet Model (IDM): add 2nd doublet to SM, charged under unbroken Z₂ symmetry

Inert BSM scalars

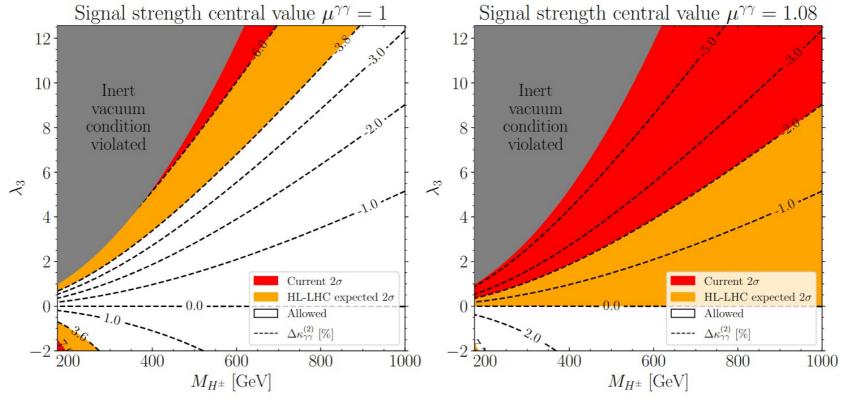

- → lightest inert scalar H = DM candidate
- DM relic density obtained via freeze-out, while evading current detection bounds
- Higgs portal DM models like IDM testable via:
 - DM direct and indirect searches
 - direct searches at colliders
 - precision/indirect tests, e.g. properties of h₁₂₅
 - $h \rightarrow invisible$ (only if $m_H < m_h/2$; can also be evaded by tuning portal coupling)
 - $h \rightarrow yy$


Probing dark matter in the Inert Doublet Model with h→yy


"Higgs resonance" scenario of IDM: DM candidate at

 $\sim 60 \text{ GeV}$

Charged Higgs boson gives a BSM contribution to $h \rightarrow yy$

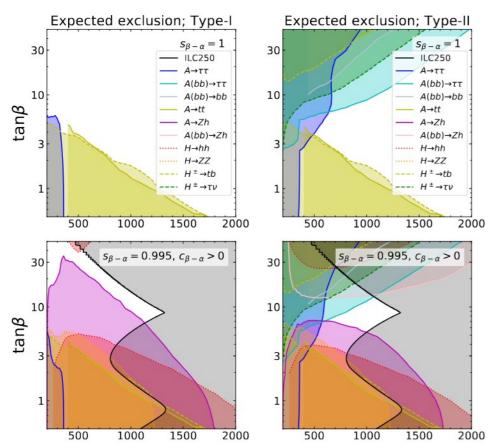

- > Almost entire "Higgs resonance" scenario $(m_A=m_{H\pm}>120 \text{ GeV})$ could be excluded by $h \rightarrow \gamma\gamma!$
- Two-loop analysis crucial for this

Probing the Inert Doublet Model with h→γγ

Significant contraints on IDM parameter space from $\Gamma(h \rightarrow \gamma \gamma)$ at HL-LHC, especially if central value of signal strength remains > 1 (now: $\mu^{\gamma \gamma}$ =1.08)

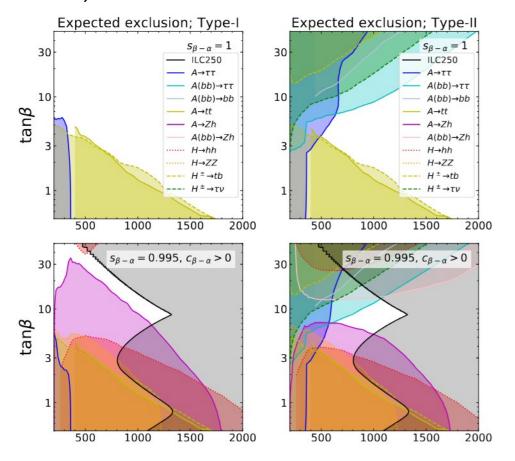
 $\Delta \kappa_{\gamma \gamma}^{(2)}$ in the IDM, $M_{H^{\pm}} = M_A = M_H + 20 \text{ GeV}, \ \lambda_2 = 0.01$

[JB, Gabelmann, Robens, Stylianou '24]

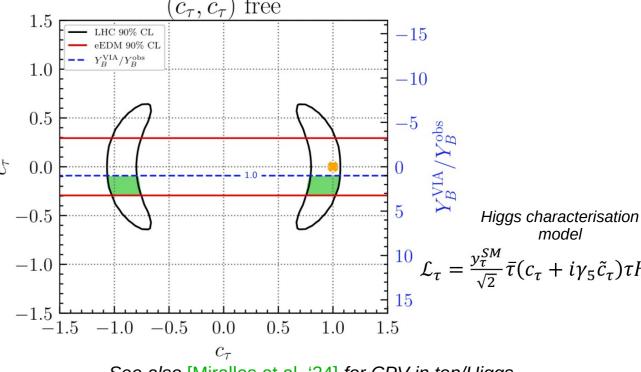

- > Tension in a single measurement is of course **not enough**
 - → **combined analysis of Higgs properties needed**, e.g. with HiggsSignals [Bechtle et al. '13, ;20], [Bahl et al. '22] or Lilith [Bernon, Dumont '15], [Kraml et al. '19]

Precise predictions for Higgs properties in BSM models

- > Public tools including NLO QCD and EW/BSM corrections for Higgs decays in specific models, e.g.:
 - HDecay [Djouadi et al., '98, '10] and variants like [Mühlleitner et al. '17], [Krause et al. '18], [Krause and Mühlleitner '19] (MSSM, 2HDM, N2HDM, composite Higgs, etc.)
 - Prophecy4f [Bredenstein et al. '06], [Altenkamp, Dittmaier, Rzehak '17], [Altenkamp, Boggia, Dittmaier '18], [Denner, Dittmaier, Mück '19] (2HDM, HSM)
 - H-COUP [Kanemura et al., '17, '19], [Aiko et al., '23] (HSM, 2HDM, IDM)
- Public tools for Higgs/scalar decays beyond LO, in general renormalisable theories
 - SARAH/SPheno [Staub '08-'15], [Porod '03], [Staub, Porod '11] based on [Goodsell, Liebler, Staub '17]
 - FlexibleDecay [Athron et al., '21] (part of FlexibleSUSY [Athron et al., '14, '17]; see also NPointFunctions [Khasianevich et al., '24])
- Inclusion of known higher-order SM contributions is crucial for reliable comparisons with experimental data
- > Higgs production at LHC dominantly via gluon fusion, less affected by BSM if not charged under SU(3), but other production channels can also be affected


Interplay of Higgs measurements with other BSM searches

Example 1: Complementary cover of BSM parameter space (here for 2HDM [Aiko et al. '20]) from direct searches and indirect constraints from precision measurements of Higgs properties (finding a deviation sets upper bound on BSM mass scale)

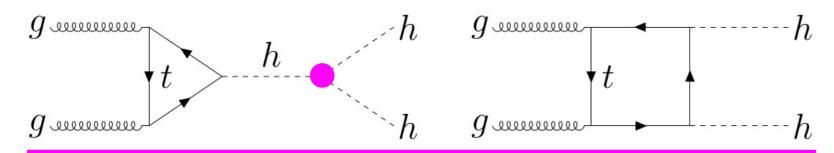


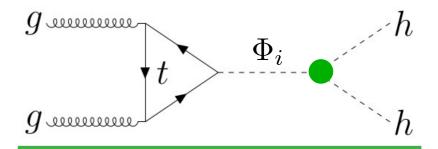
Interplay of Higgs measurements with other BSM searches

(here for 2HDM [Aiko et al. '20]) from direct searches and indirect constraints from precision measurements of Higgs properties (finding a deviation sets upper bound on BSM mass scale)

- **Example 2**: CP violation (needed for baryogenesis, c.f. [Sakharov '67]) in Higgs-fermion interactions so far not very constrained (unlike in Higgs-gauge-boson interactions)
 - → probed via angular distributions of Higgs processes at colliders, via electric dipole moments, and related to prediction of BAU, e.g. here global analysis of CPV in Higgstau sector [Bahl et al. '22]

See also [Miralles et al. '24] for CPV in top/Higgs sector (studied within SMEFT)


Di-Higgs production

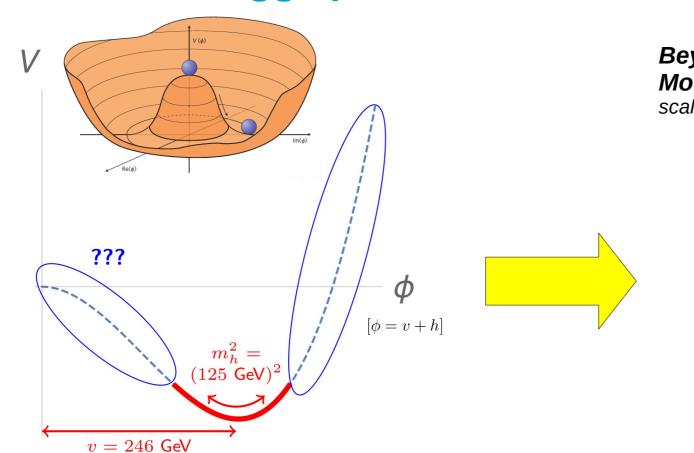

DESY. Page 19

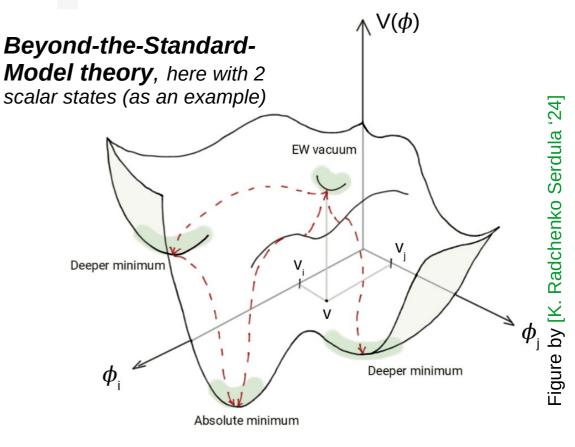
Di-Higgs production

h ≡ h₁₂₅ [discovered Higgs boson]

Dominant channel for di-Higgs production at (HL-)LHC: gluon fusion Here, leading order (LO) diagrams, involving top quark (dominant contribution among quark loops)

"Non-resonant contributions"

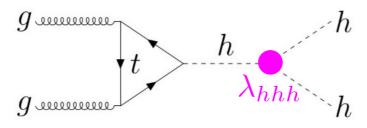

- Standard Model (SM)-like diagrams
- Involves the trilinear self-coupling of $h_{125} \lambda_{hhh}$
 - → probe of the Higgs potential
- Large destructive interference between triangle and box diagram
 - → suppression of cross-section in SM
 - ightarrow large changes in di-Higgs cross-section possible from BSM effects in λ_{hhh}

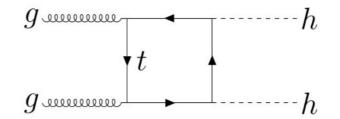

"Resonant contributions"

- Diagrams involving BSM scalars in s-channel (here generically denoted Φ_i)
- → collider searches for BSM scalars
- Involve BSM trilinear scalar couplings $\lambda_{iik} \rightarrow probe \ of Higgs \ potential \ in$
 - extended scalar sectors

NB: in the following, I focus on **higher-order** <u>BSM</u> corrections to $gg->h_ih_j$ Higher-order QCD/EW corrections to ggF and other channels are of course crucial \rightarrow see talk of S. Jones!

Form of the Higgs potential and trilinear scalar couplings

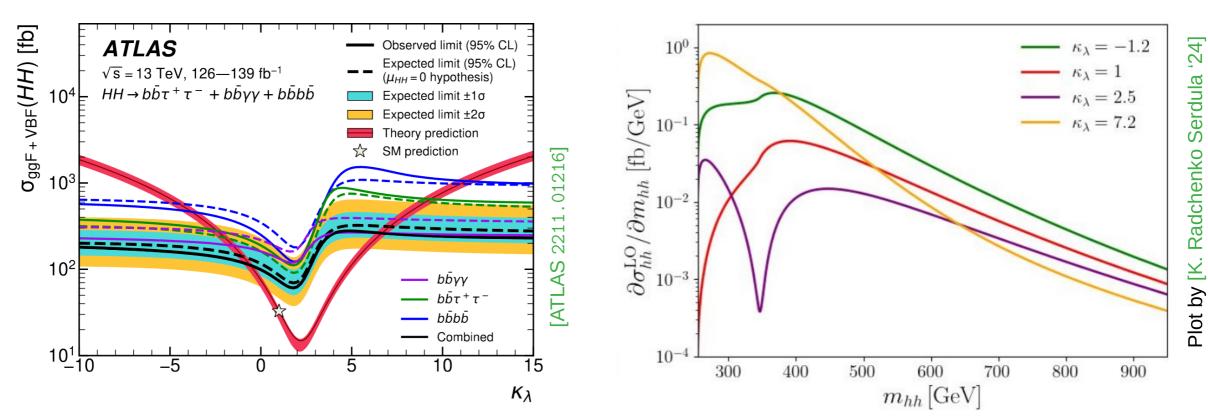

One field direction


 \leftrightarrow shape of potential away from EW minimum is related to λ_{hhh}

Extended scalar sectors

- → more complex Higgs potentials
- → more trilinear scalar couplings needed to reconstruct potential
- Form of Higgs potential related to how EWPT took place in early Universe

Interference in non-resonant di-Higgs production

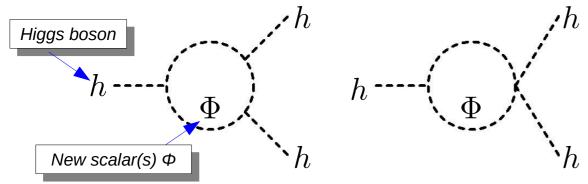


Coupling modifier:

$$\kappa_{\lambda} \equiv rac{\lambda_{hhh}}{(\lambda_{hhh}^{(0)})^{\mathrm{SM}}}$$

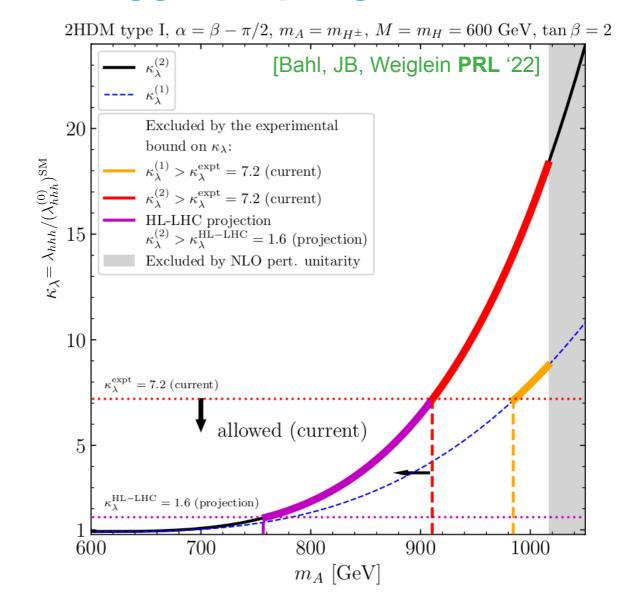
Relative change in total cross-section for varying κ_{λ}

Differential m_{hh} distributions for varied κ_{λ}


Note: impact of change in top Yukawa → overall shift (up/down) of distribution

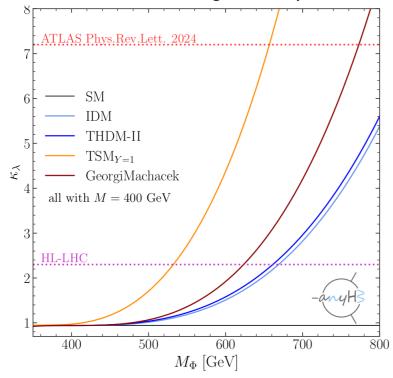
Mass-splitting effects in the trilinear Higgs coupling

 \triangleright Latest bounds on λ_{hhh} [ATLAS PRL '24]


$$-1.2 < \kappa_{\lambda} = \frac{\lambda_{hhh}}{(\lambda_{hhh}^{(0)})^{\text{SM}}} < 7.2$$

ightharpoonup Large effects from New Physics possible in λ_{hhh} , due to radiative corrections from extra scalars, e.g. at leading order (one loop)

Physical nature of these large BSM effects **confirmed by explicit two-loop calculations**, e.g. [JB, Kanemura '19]

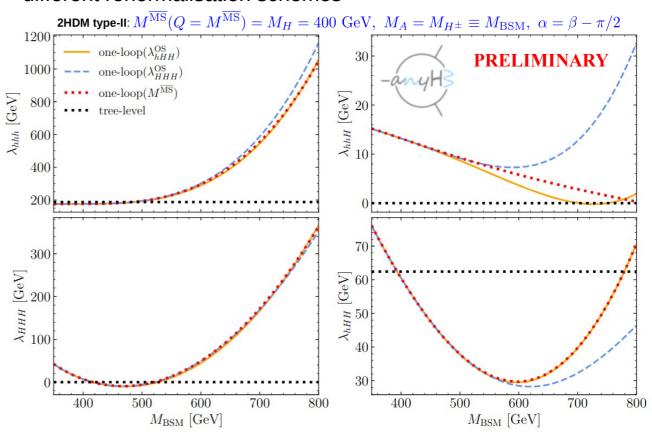

 \triangleright BSM deviations in κ_{λ} can also be motivated from the point of view of early-Universe evolution, e.g. strong first-order EW phase transition (more in a few slides)

Large corrections to trilinear scalar couplings

Mass-splitting effects in various BSM models:

anyH3 v1 [Bahl, JB, Gabelmann, Weiglein '23] public tool for full one-loop calculation of λ_{hhh} in arbitrary renormalisable models, using UFO inputs

Many more examples with model-specific calculations:


at 1L: [Kanemura et al. '04, '16], [Hollik, Penaranda '04], [Aoki et al. '12], [Dao et al. '13], [Hashino, Kanemura, Orikasa '16], [Basler et al. '17, '19], [Chiang et al. '18]:

... and at 2L: [Brucherseifer et al. '13], [Dao et al. '15], [Senaha '18], [JB, Kanemura '19], [JB, Kanemura, Shimoda '20], [Borschensky et al '22], etc.

Mass-splitting effects in trilinear scalar couplings:

anyH3 v2 [Bahl, JB, Gabelmann, Radchenko Serdula, Weiglein WIP] \rightarrow calculation extended to generic λ_{ijk}

Here for a benchmark example in an aligned 2HDM and with different renormalisation schemes

See also e.g. [Arco, Heinemeyer, Mühlleitner, '25]

Two example models to investigate di-Higgs production

- RxSM: general singlet extension of the SM (without a Z₂ symmetry)
 - → add a real singlet to SM
 - → 2 CP-even Higgs bosons

Scalar sector parametrised in terms of:

$$\underbrace{m_h^2, v}_{\text{known}}, \underbrace{m_H^2, \alpha, v_S, \kappa_S, \kappa_{SH}}_{\text{free}}$$

with

 $m_h,\ m_H$: masses of detected and BSM Higgs bosons

 α : CP-even mixing angle v, v_S : EW and singlet VEVs

 $\kappa_S, \ \kappa_{SH}$: Lagrangian trilinear couplings

2HDM: Two-Higgs-Doublet Model (here CP-conserving variant)

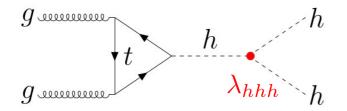
Drawing by [K. Radchenko Serdula]

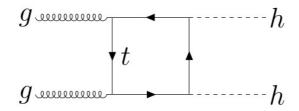
Scalar sector parametrised in terms of:

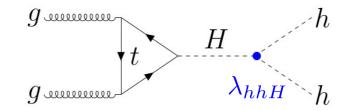
$$\underbrace{m_h^2, v}_{\text{known}}, \underbrace{m_H^2, m_A^2, m_{H^{\pm}}^2, M, \alpha, \tan \beta}_{\text{free}}$$

with

 m_{h,H,A,H^\pm} : masses of detected and BSM Higgs bosons

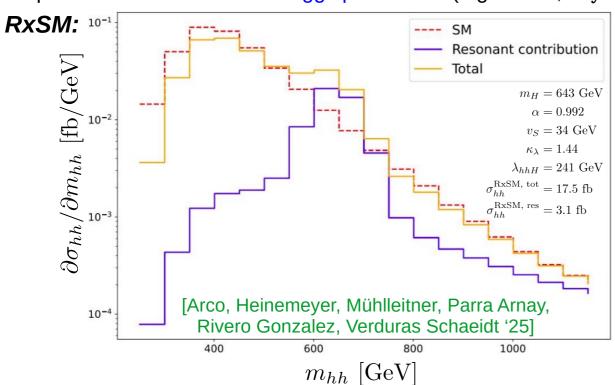

 α : CP-even mixing angle

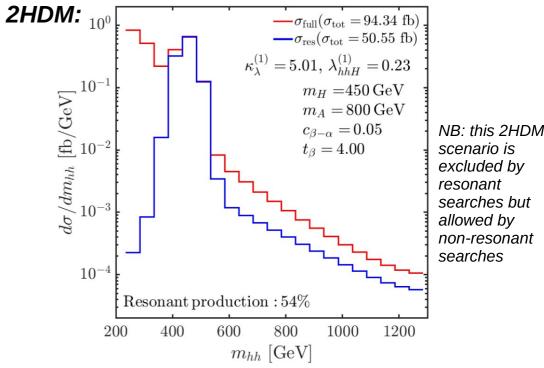

 $\tan \beta \equiv v_2/v_1$: ratio of VEV of 2 doublets


v : EW VEV

M: BSM mass scale (controls decoupling)

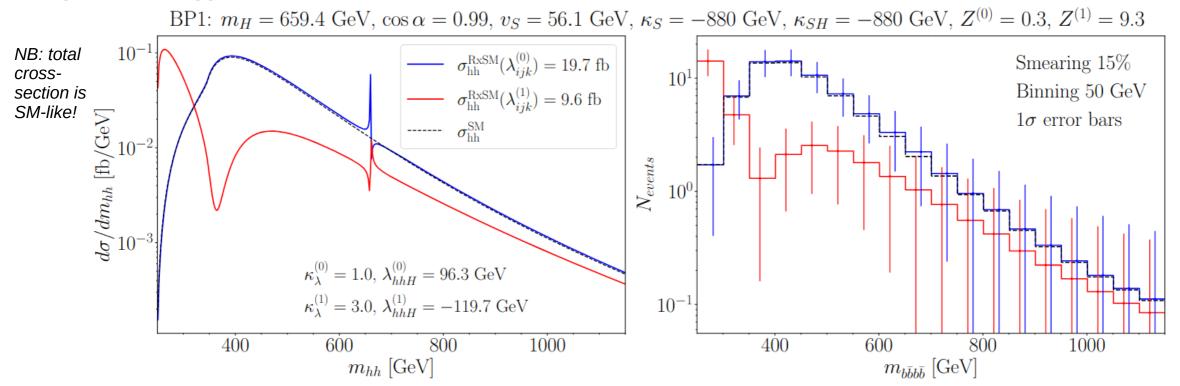
Three **leading diagrams** in di-Higgs production, with **significant dependence on 2 relevant trilinears:** λ_{hh} and λ_{hh}





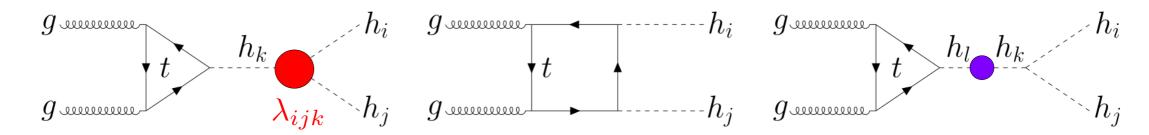
Interference effects: resonant contributions vs full distributions

- Including interference between non-resonant and resonant contributions can drastically change di-Higgs invariant mass distributions
- Distributions computed with HPAIR ([Plehn, Spira, Zerwas '96], [Dawson, Dittmaier, Spira '98], [Abouabid et al. '22], [Arco et al., (25]), shown here after experimental effects taken into account (15% smearing and 50 GeV binning)
- Relatively good agreement between peak of resonant and total distributions, but away from peak they can differ by up to 2 orders of magnitude
 - → large impact of interference effects warrants analysis of these scenarios with full predictions
 - → possible with codes for di-Higgs predictions (e.g. HPAIR, anyHH), or reweighting tools, e.g. HHReweighter [Feuerstake et al '24]



scenario is excluded by resonant searches but allowed by non-resonant searches

[Heinemeyer, Mühlleitner, Radchenko Serdula, Weiglein '24]


Impact of NLO corrections in the RxSM

Impact on di-Higgs invariant mass distributions

- Cross-sections computed with RxSM-specific version of HPAIR [Arco et al. '25]; results shown at LO in QCD
- Large radiative corrections to both trilinear couplings, λ_{hhh} and λ_{hhH} , modify the interference pattern and shift the dip from $m_{hh} \sim 250$ GeV to 350 GeV + change the peak-dip structure at m_{H} into dip-peak
- After taking into account experimental effects (with smearing and binning), an analysis with tree-level trilinears $(Z^{(0)}=0.3)$ would not be able to find a deviation from the SM, but an analysis with one-loop ones would $(Z^{(1)}=9.3)$

- > anyHH: Total and differential cross-sections (so far, at LO in QCD) for $gg \rightarrow h_i h_i$ including:
 - > 1L corrections to λ_{iik} (computed by anyH3)
 - BSM contributions in s-channel diagrams
 - momentum-dependence both in vertex corrections and in propagators

> Takes UFO model files as inputs, as anyH3. So far limited to models without additional coloured particles.

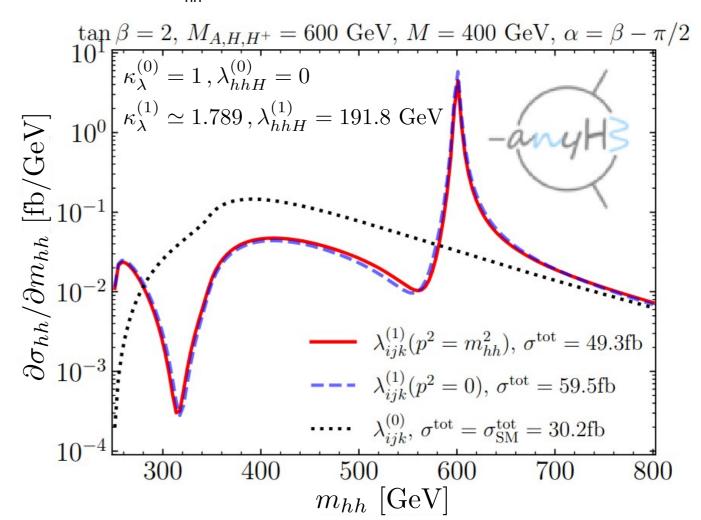
Good agreement found with existing results in the literature – e.g. HPAIR (details in backup)

See also parallel talk of M. Gabelmann tomorrow!

Impact of NLO corrections in the 2HDM

[Bahl, JB, Gabelmann, Radchenko Serdula, Weiglein *WIP*]

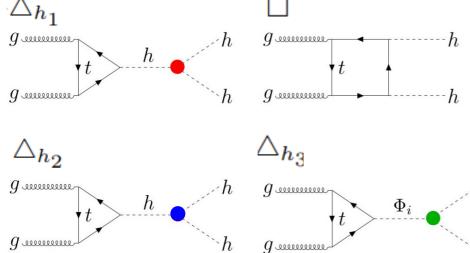
Example in aligned 2HDM, with di-Higgs cross-section and m_{hh} distributions computed with anyHH


 $\rightarrow \kappa_{\lambda}^{(0)} = 1; \lambda_{hhH}^{(0)} = 0$ (due to alignment limit)

Impact of loop corrections to trilinear couplings

Black vs red curves \rightarrow huge impact of loop corrections to λ_{ijk} on both crosssection and distributions

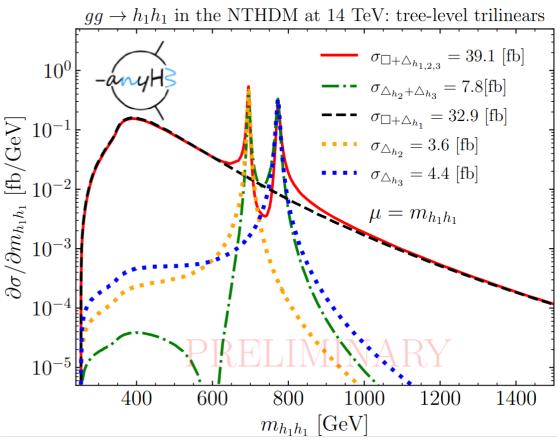
Impact of momentum in s-channel diagrams


Blue vs red curves \rightarrow O(20%) impact of momentum in λ_{iik}

Note: similar results for impact of loop corrections also found [Heinemeyer, Mühlleitner, Radchenko Serdula, Weiglein '24]

Results in the N2HDM with anyHH

- N2HDM = 2HDM + real singlet
 - → 3 CP-even mass eigenstates h_1, h_2, h_3
- anyHH allows computing contributions to di-Higgs production together or separately → find impact of interference
- Here first with tree-level trilinear scalar couplings

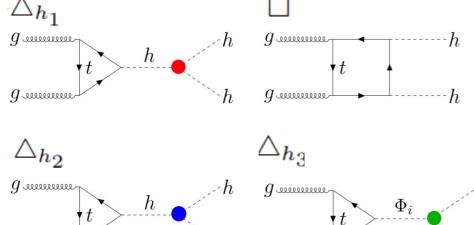


$\kappa_{\lambda}^{(0)}$	0.97
$\kappa_{\lambda}^{(1)}$	2.18
$\lambda_{h_1h_1h_2}^{(0)}$ [GeV]	93.5
$\lambda_{h_1h_1h_2}^{(1)} \text{ [GeV]}$	40.3
$\lambda_{h_1h_1h_3}^{(0)} \text{ [GeV]}$	160.5
$\lambda_{h_1h_1h_3}^{(1)} \text{ [GeV]}$	342.8

$\kappa_{\lambda}^{(0)}$	0.97
$\kappa_{\lambda}^{(1)}$	2.18
$\lambda_{h_1h_1h_2}^{(0)}$ [GeV]	93.5
$\lambda_{h_1h_1h_2}^{(1)}$ [GeV]	40.3
$\lambda_{h_1h_1h_3}^{(0)}$ [GeV]	160.5
$\lambda_{h_1h_1h_3}^{(1)}$ [GeV]	342.8

N2HDM benchmark definition:

 $\alpha_1 = 1.019$, $M_{h_1} = 125 \,\text{GeV},$ $M_A = 673 \,\text{GeV},$

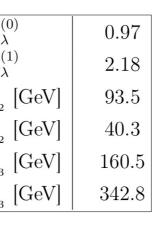

 $\alpha_2 = -0.076$, $M_{h_2} = 695 \,\text{GeV},$ $M_{H^{\pm}} = 762 \,\text{GeV},$ $v_S = 415.4 \,\text{GeV}$.

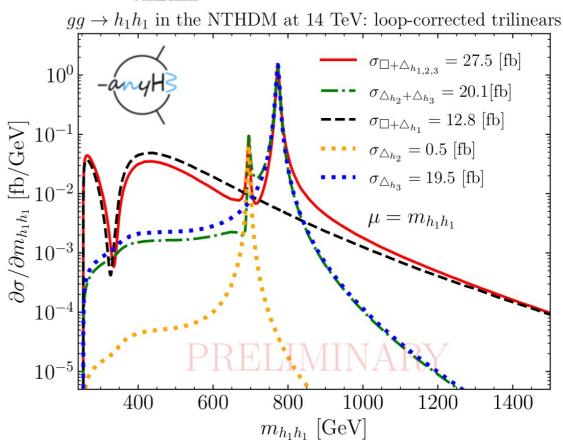
 $\alpha_3 = 0.960$, $M_{h_3} = 773 \,\text{GeV},$ $M_{12} = 367 \,\text{GeV},$

Allowed by flavour. Higgs phys. EWPO, vacuum stability, perturbative unitarity

Results in the N2HDM with anyHH

- N2HDM = 2HDM + real singlet
 - → 3 CP-even mass eigenstates h_1, h_2, h_3
- anyHH allows computing contributions to di-Higgs production together or separately → find impact of interference
- Here first with loop-corrected trilinear scalar couplings




q

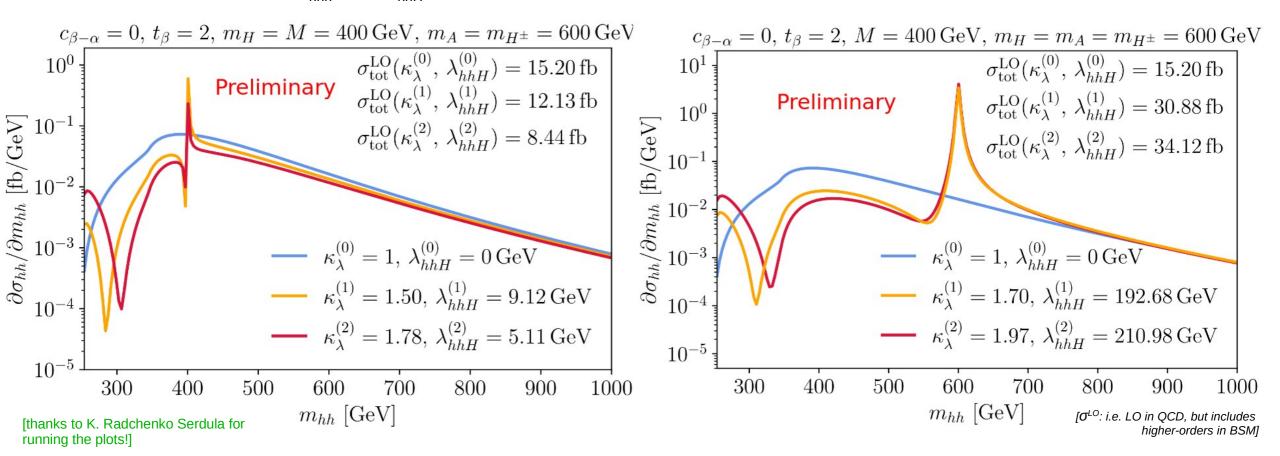
$\kappa_{\lambda}^{(0)}$	0.97
$\kappa_{\lambda}^{(1)}$	2.18
$\lambda_{h_1h_1h_2}^{(0)}$ [GeV]	93.5
$\lambda_{h_1h_1h_2}^{(1)}$ [GeV]	40.3
$\lambda_{h_1h_1h_3}^{(0)}$ [GeV]	160.5
$\lambda_{h_1h_1h_3}^{(1)}$ [GeV]	342.8

N2HDM benchmark definition:

 $\alpha_1 = 1.019$, $M_{h_1} = 125 \,\text{GeV},$ $M_A = 673 \,\text{GeV},$

 $\alpha_2 = -0.076$, $M_{h_2} = 695 \,\text{GeV},$ $M_{H^{\pm}} = 762 \,\text{GeV},$ $v_S = 415.4 \,\text{GeV}$.

 $\alpha_3 = 0.960$, $M_{h_3} = 773 \,\text{GeV},$ $M_{12} = 367 \,\text{GeV},$

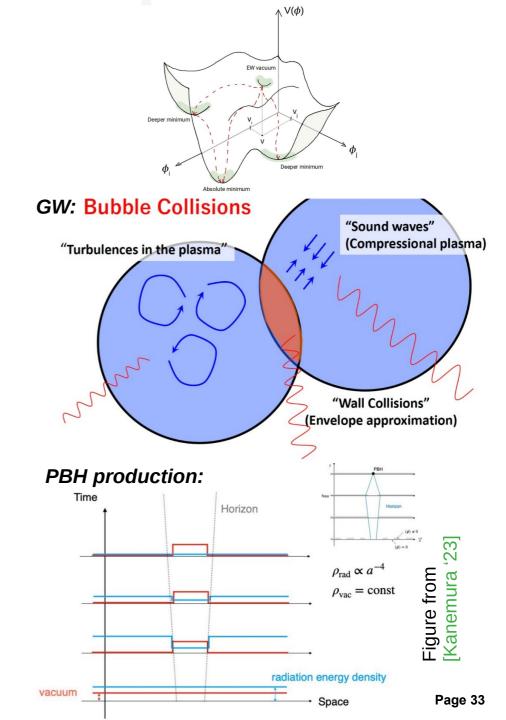

Allowed by flavour. Higgs phys. EWPO. vacuum stability, perturbative unitarity

g

Impact of NNLO BSM corrections in the 2HDM

What about higher orders?

Here: example in **aligned 2HDM**, with di-Higgs cross-section and m_{hh} distributions computed with anyHH and with 2L corrections to λ_{hhh} and λ_{hhH} from [JB, Egle, Verduras Schaeidt WIP]


Note: see also [Degrassi, Gröber, Slavich '25] for NNLO BSM corrections to λ_{hhh} , λ_{hhH} and total di-Higgs cross-section

Complementary probes of SFOEWPT

- SFOEWPT motivated by scenario of electroweak baryogenesis, as a possible solution to BAU,
 - → needed fulfill 3rd Sakharov condition [Sakharov '67] (departure from thermal equilibrium)
 - c.f. talk by L. Biermann tomorrow

Probes of SFOEWPT:

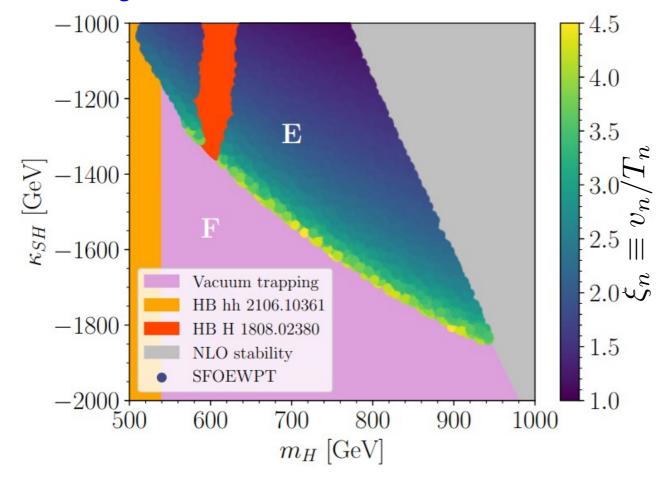
- reconstruct form of Higgs potential realised in Nature
 - → access trilinear Higgs/scalar coupling(s), e.g. at (HL-)LHC via di-Higgs production processes
- search for cosmological relics of a strong first-order phase transition
 - stochastic background of **gravitational waves** (GW)
 - → probed with space-based GW interferometers like LISA
 - **primordial black holes** (PBHs) → densities of PBHs constrained by micro-lensing observations (e.g. OGLE)
 - primordial magnetic fields (PMFs) → lower bounds on PMFs from X-ray observations (e.g. MAGIC or Fermi/LAT)

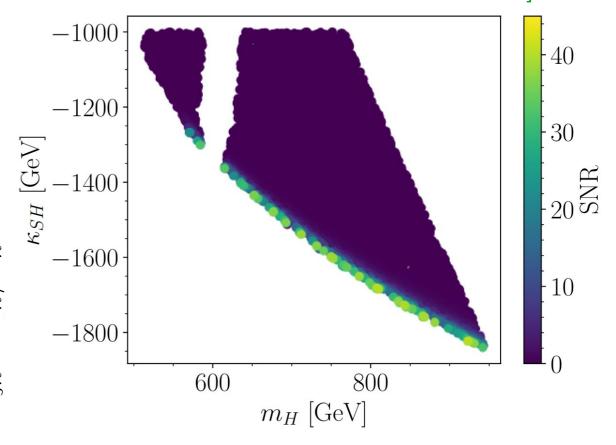
Complementary probes of SFOEWPT

Probes of SFOEWPT:

- reconstruct form of Higgs potential realised in Nature
- search for cosmological relics of a strong first-order phase transition
- Many examples, e.g. for
 - models with extended scalar sectors (singlet model variants, 2HDMs, classical scale invariant models, etc.) [Hashino et al., '16, '18, '19], [Huang, Long, Wang, '16], [Artymowski et al. '17], [Chala, Ramos, Spannowsky '18], [Alves et al. '19,'20], [Chen, Li, Wu, Bian '19], [Biekötter et al. '22]
 - composite Higgs models [Bruggisser et al., '18]
 - **EFTs** (SMEFT/HEFT/naHEFT) [Hashino et al. '22, '25]
 - Warped extra-dimensions [Ghoshal et al. '25]
 - ... and many more See also review [Athron et al '23]

mass from Higgs VEV

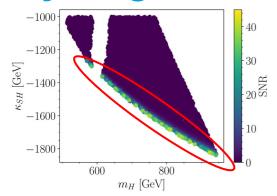

Synergies between di-Higgs and gravitational waves in RxSM


[JB, Heinemeyer, Pulido Boatella, Verduras Schaeidt *WIP*]

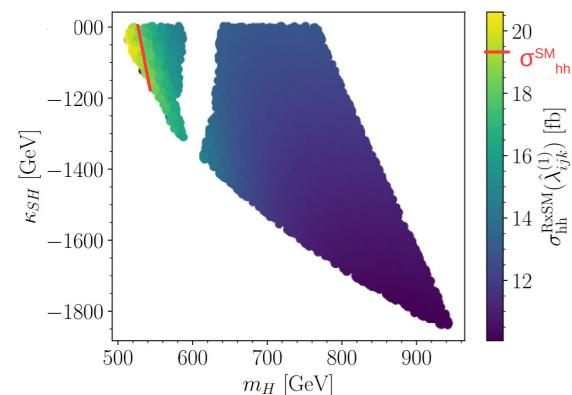
Thermal histories in RxSM

Here: benchmark plane with: $c_{\alpha} = 0.98$, $\kappa_{s} = -300$ GeV, $v_{s} = 280$ GeV

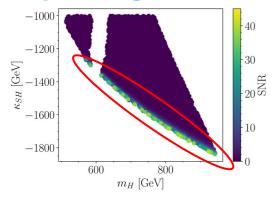
Region E → **SFOEWPT**



For a band in this plane, one finds a **stochastic background of gravitational waves** (GW) **detectable with LISA** (w. 3 yrs. data taking, $v_w = 0.6$)

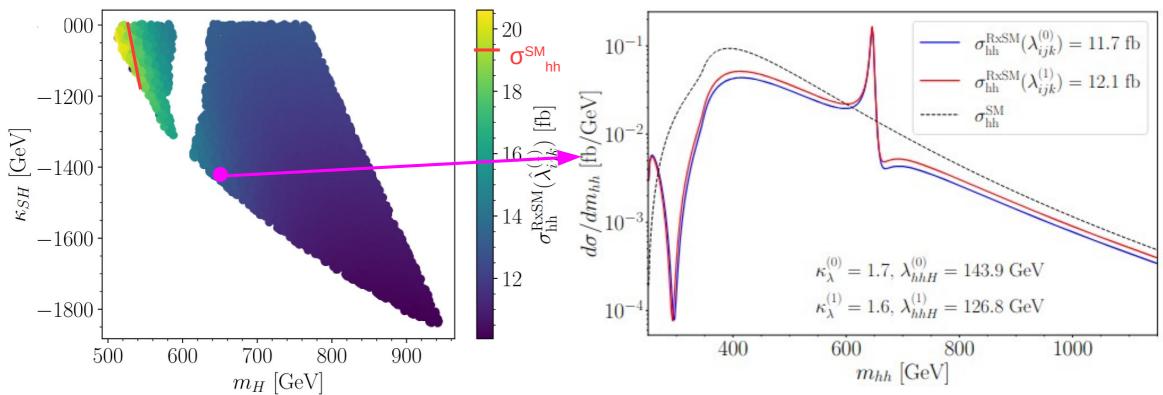

→ could we probe this region at (HL-)LHC?

Synergies between di-Higgs and gravitational waves in RxSM


Region with observable GW signal at LISA:

- di-Higgs cross-section below SM prediction
 - → difficult to probe this region using total cross-section

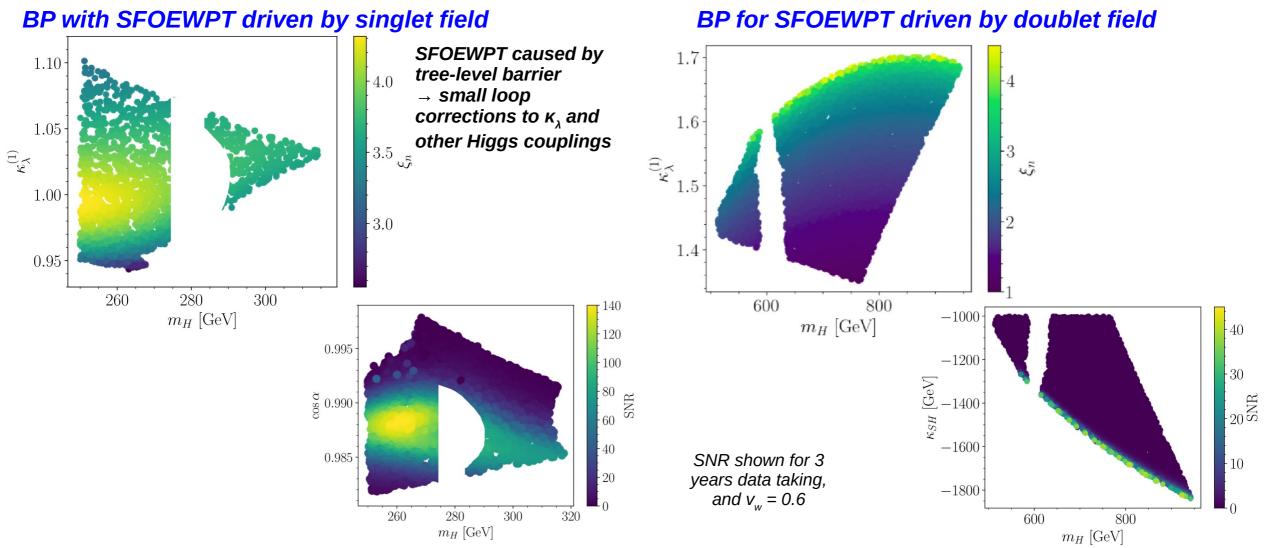
[JB, Heinemeyer, Pulido Boatella, Verduras Schaeidt *WIP*]


Synergies between di-Higgs and gravitational waves in RxSM

Region with observable GW signal at LISA:

- di-Higgs cross-section below SM prediction
 - → difficult to probe this region using total cross-section

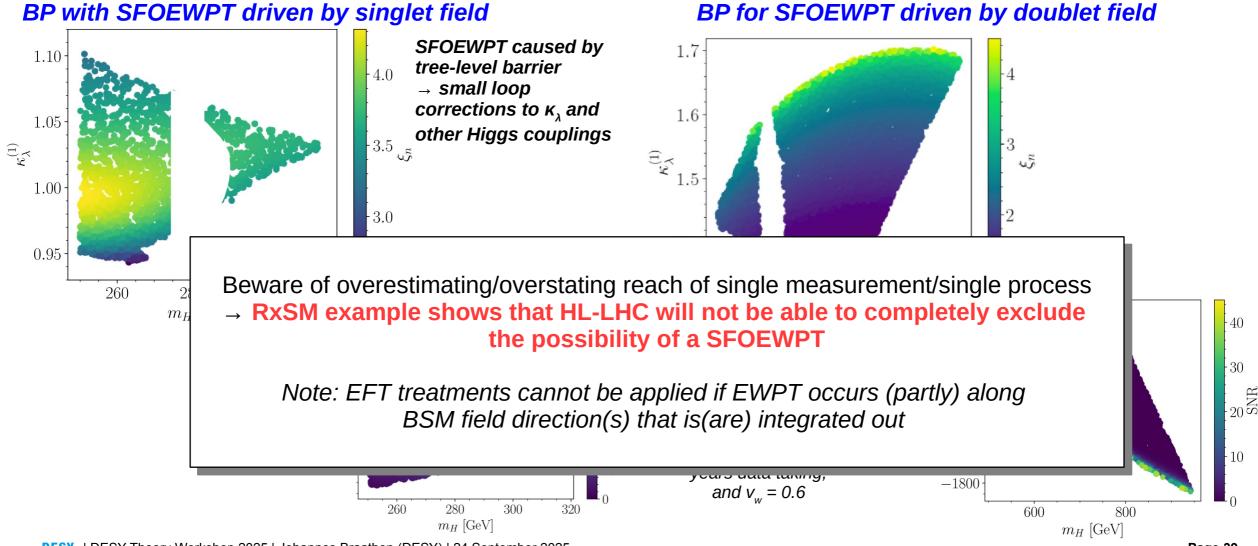
... but m_{hh} distribution can be distinguished from SM!


[JB, Heinemeyer, Pulido Boatella,

Verduras Schaeidt *WIP*]

Complementary probes of SFOEWPT in RxSM

[JB, Heinemeyer, Pulido Boatella, Verduras Schaeidt *WIP*]


- No guarantee that SFOEWPT scenarios in RxSM can all be probed with gg → hh or GW
 - → complementarity needed to cover as much as possible of the RxSM parameter space

Complementary probes of SFOEWPT in RxSM

[JB, Heinemeyer, Pulido Boatella, Verduras Schaeidt *WIP*]

- No guarantee that SFOEWPT scenarios in RxSM can all be probed with gg → hh or GW
 - → complementarity needed to cover as much as possible of the RxSM parameter space

Summary

- > 85% of (HL-)LHC data remains to be taken \rightarrow plenty of room left for BSM discoveries!
- Significant progress to come in direct searches, thanks to ingenuity in terms of new search strategies, analysis techniques, etc.
- Some tentalising excesses
 - → more data from Run 3 and beyond might clarify this
 - → it suffices that one of them materialises to have a BSM discovery!
- Precision measurements of properties of Higgs boson (or of other known particles) have strong potential to probe or constrain BSM
 - → high precision theory predictions (QCD/EW/BSM) are needed
 - → combined/global analyses
- Intense theory efforts to prepare for di-Higgs production searches, one of the flagship measurements at HL-LHC
 - → BSM higher-order effects could be very significant

Thank you very much for your attention!

Contact

DESY. Deutsches

Elektronen-Synchrotron

www.desy.de

Johannes Braathen

DESY Theory group

Building 2a, Room 208a

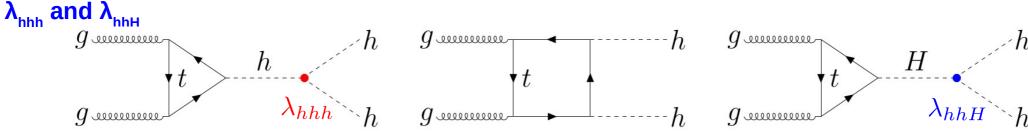
johannes.braathen@desy.de

Backup slides

DESY. Page 42

RxSM

DESY. Page 43


The RxSM

General singlet extension of the SM (no Z₂ symmetry)

Potential

$$V(\Phi, S) = \mu^{2}(\Phi^{\dagger}\Phi) + \frac{\lambda}{2}(\Phi^{\dagger}\Phi)^{2} + \kappa_{SH}(\Phi^{\dagger}\Phi)S + \frac{\lambda_{SH}}{2}(\Phi^{\dagger}\Phi)S^{2} + \frac{M_{S}^{2}}{2}S^{2} + \frac{\kappa_{S}}{3}S^{3} + \frac{\lambda_{S}}{2}S^{4}.$$

- Field content (after EWSB) $\Phi = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}G^+ \\ v + \phi + iG^0 \end{pmatrix} \,, \qquad S = s + v_S$
- Mixing among 2 CP-even Higgs bosons: Gauge basis: ϕ , $s \xrightarrow{\text{mixing angle } \alpha} \text{Mass basis: } h$, H
- RxSM scalar sector parametrised in terms of $\underbrace{m_h^2, v}_{\text{known}}, \underbrace{m_H^2, \alpha, v_S, \kappa_S, \kappa_{SH}}_{\text{free}}$
- > Three **leading diagrams** in di-Higgs production, with **significant dependence on 2 relevant trilinears**:

• Masses: m_h^2, m_H^2

ullet EW VEV: v

- Singlet VEV: v_S
- Mixing angle: α
- Tadpoles: t_{ϕ}, t_{s}
- Kappas: κ_S, κ_{SH}

Renormalization of two-point functions

SM-like electroweak sector

No divergences

Rotation matrix: [Kanemura, Kikuchi, Yagyu, '15]

OS/Standard scheme

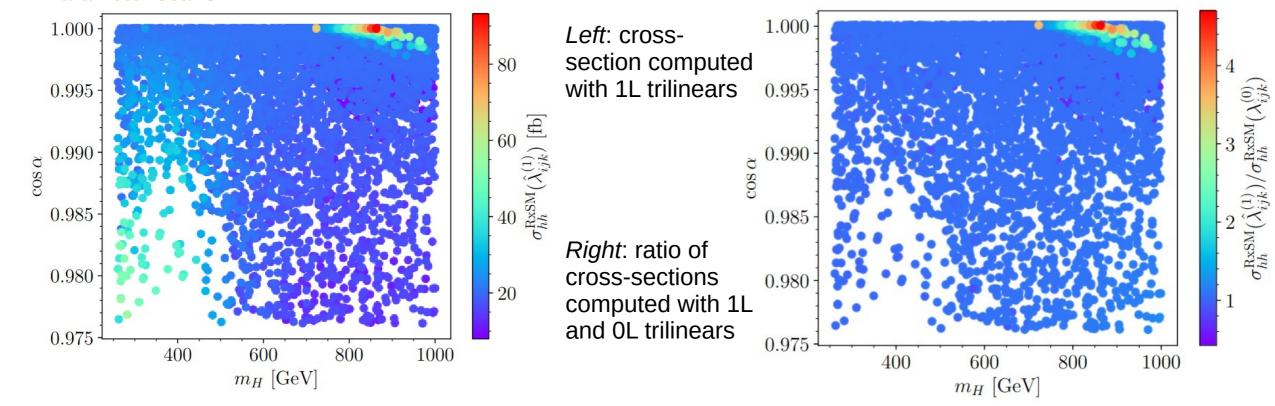
$$\hat{\lambda}_{hHH}^{(1)} \stackrel{!}{=} \lambda_{hHH}^{(0)} \quad \hat{\lambda}_{HHH}^{(1)} \stackrel{!}{=} \lambda_{HHH}^{(0)}$$

Slide by A. Verduras Schaeidt

Interference effects in the RxSM

Di-Higgs production differential distributions: total result vs resonant only

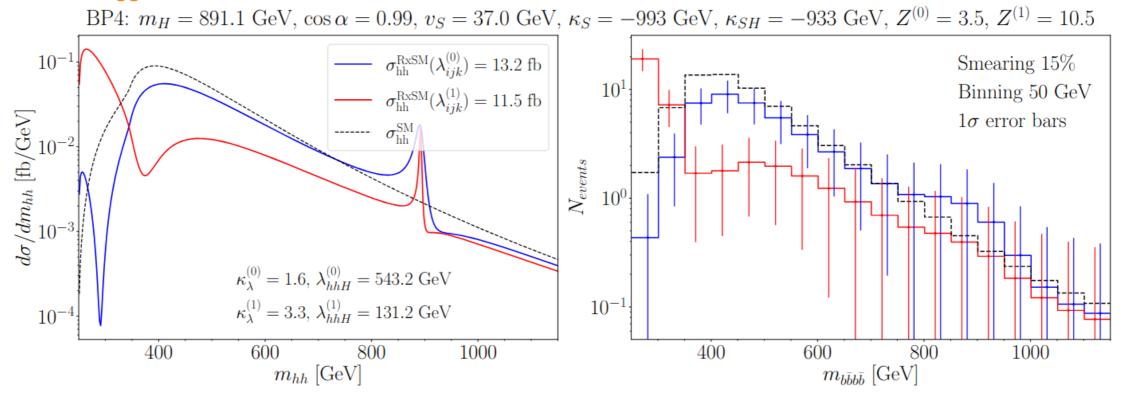
[Arco, Heinemeyer, Mühlleitner, Parra Arnay, Rivero Gonzalez, Verduras Schaeidt '25]


Benchmark P1

$$m_H = 459 \text{ GeV}$$
 $\alpha = 0.984$
 $v_S = 46 \text{ GeV}$
 $\kappa_{\lambda} = 1.47$
 $\lambda_{hhH} = 177 \text{ GeV}$
 $\sigma_{hh}^{\text{RxSM, tot}} = 31.1 \text{ fb}$
 $\sigma_{hh}^{\text{RxSM, res}} = 16.3 \text{ fb}$

- > Distributions shown here after experimental effects are taken into account (15% smearing and 50 GeV binning)
- > Relatively good agreement between peak of resonant and total distributions, but tails are far apart

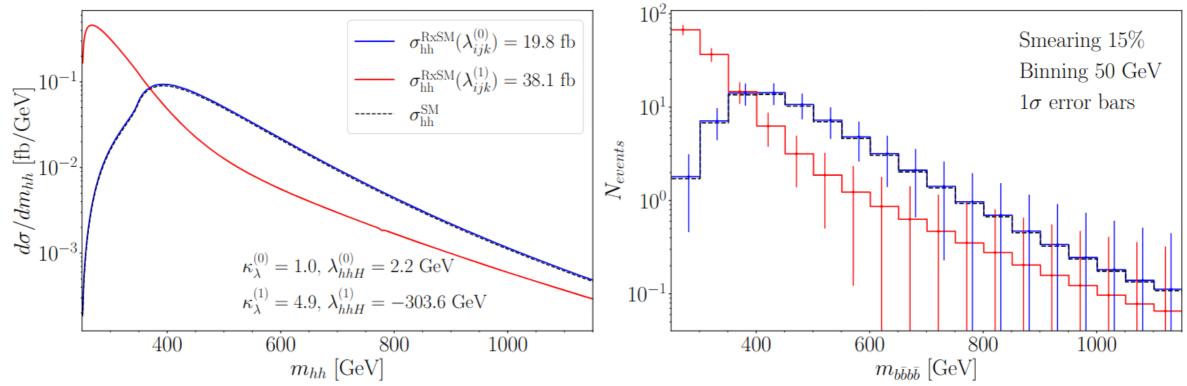
Impact of NLO corrections in the RxSM


Parameter scans

- ► Largest increases in σ_{hh}^{RxSM} w.r.t. SM for m_H > 750 GeV, v_S < 50 GeV and small mixing \rightarrow loop induced effects
- Points with smaller increases in σ_{hh}^{RXSM} (up to ~2.5 σ_{hh}^{SM}) for low $m_H \rightarrow effect$ from resonant H contribution (already at tree level)

Impact of NLO corrections in the RxSM

Impact on di-Higgs invariant mass distributions

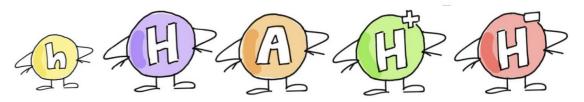


- Total cross-section is not modified very significantly
- Large (positive) correction to λ_{hhh} changes the distribution drastically for low m_{hh} , while large negative correction to λ_{hhH} makes the peak at m_{H} narrower
- Change at low m_{hh} is substantial enough to allow distinguishing the RxSM from the SM with an analysis using one-loop trilinear scalar couplings

Impact of NLO corrections in the RxSM

Impact on di-Higgs invariant mass distributions

BP2: $m_H = 777.6 \text{ GeV}$, $\cos \alpha = 1.0$, $v_S = 44.7 \text{ GeV}$, $\kappa_S = -931 \text{ GeV}$, $\kappa_{SH} = -931 \text{ GeV}$, $Z^{(0)} = 0.3$, $Z^{(1)} = 21.3$



- \rightarrow Similar to BP1, main effect from loop correction to κ_{λ} (resonant peak suppressed by high m_H)
- As for BP1, for BP2, an analysis with tree-level trilinears ($Z^{(0)}=0.3$) would not be able to show a deviation from the SM, but an analysis with one-loop ones would ($Z^{(1)}=21.3$)

2HDM

DESY. Page 50

The Two-Higgs-Doublet Model

2 SU(2) doublets Φ₁₂ of hypercharge ½

Figure by [K. Radchenko Serdula '24]

> CP-conserving 2HDM, with softly-broken Z_2 symmetry $(\Phi_1 \rightarrow \Phi_1, \Phi_2 \rightarrow -\Phi_2)$ to avoid tree-level FCNCs

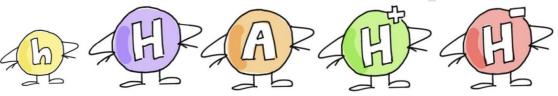
$$V_{2\text{HDM}}^{(0)} = m_1^2 |\Phi_1|^2 + m_2^2 |\Phi_2|^2 - m_3^2 (\Phi_2^{\dagger} \Phi_1 + \Phi_1^{\dagger} \Phi_2)$$

$$+ \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_2^{\dagger} \Phi_1|^2 + \frac{\lambda_5}{2} \left((\Phi_2^{\dagger} \Phi_1)^2 + \text{h.c.} \right)$$

$$v_1^2 + v_2^2 = v^2 = (246 \text{ GeV})^2$$

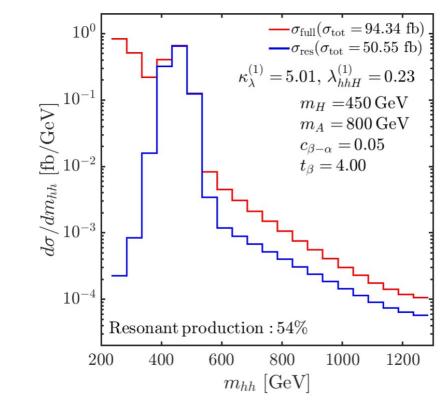
Mass eigenstates:

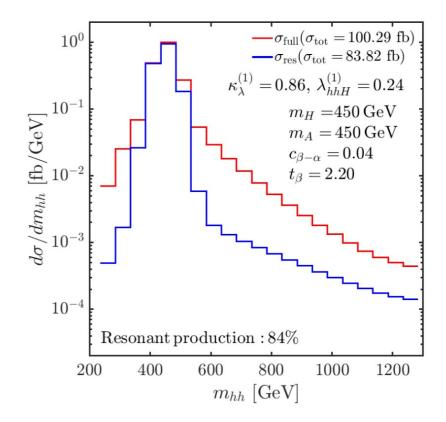
h, H: CP-even Higgs bosons ($h \rightarrow 125$ -GeV SM-like state); A: CP-odd Higgs boson; H $^{\pm}$: charged Higgs boson


- **BSM parameters**: 3 BSM masses m_H , m_A , $m_{H\pm}$, BSM mass scale M (defined by $M^2 \equiv 2m_3^2/s_{2\beta}$), angles α (CP-even Higgs mixing angle) and β (defined by $tanβ = v_2/v_1$)
- p BSM-scalar masses take form $m_\Phi^2=M^2+ ilde{\lambda}_\Phi v^2\,, \quad \Phi\in\{H,A,H^\pm\}$
- $^>$ We take the **alignment limit** α = β π/2 → all Higgs couplings are SM-like at tree level → compatible with current experimental data

Interference effects in the 2HDM

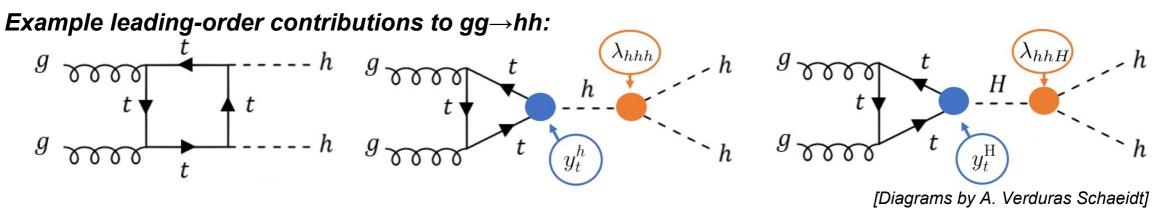
[Heinemeyer, Mühlleitner, Radchenko Serdula, Weiglein '24]


Resonant only vs total distributions


2HDM adds second doublet to SM

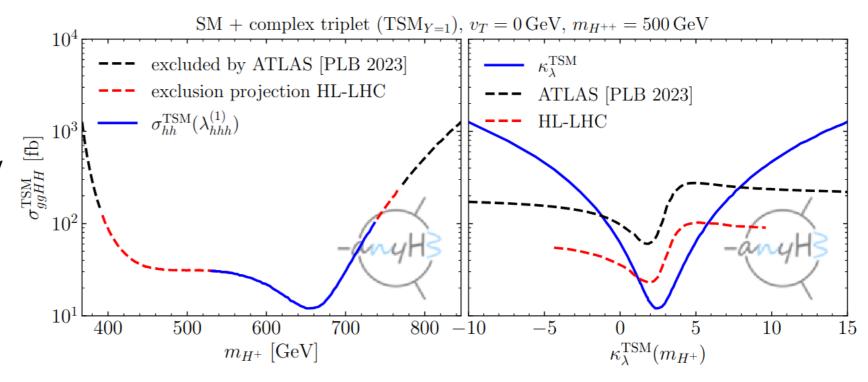
Drawing by [K. Radchenko Serdula '24]

- Interference between non-resonant and resonant contributions as well as loop corrections to trilinear scalar couplings can again drastically change di-Higgs invariant mass distributions
- > 2 benchmark scenarios excluded by resonant searches but allowed by non-resonant searches [ATLAS '22]
 - → large impact of interference effects warrants analysis of these scenarios with full calculation

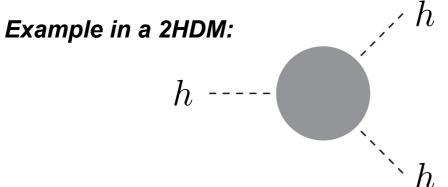


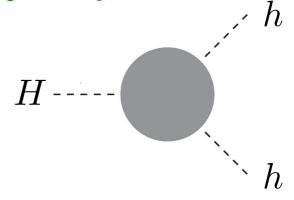
anyH3 (v2) / anyHH

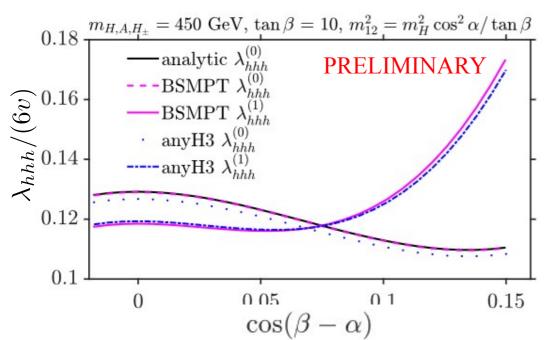
DESY. Page 53

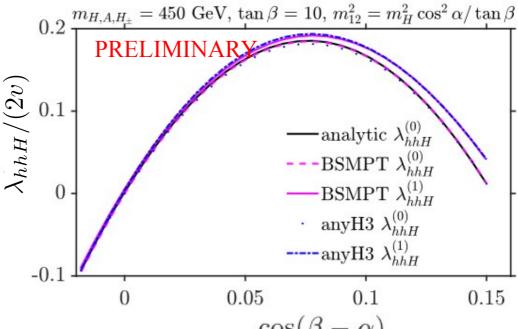

Ongoing developments in anyBSM: anyLambdaijk and anyHH

Having predictions for di-Higgs production, including all (i.e. resonant + non-resonant) contributions + 1L corrections to trilinear scalar couplings in arbitrary models would be highly desirable

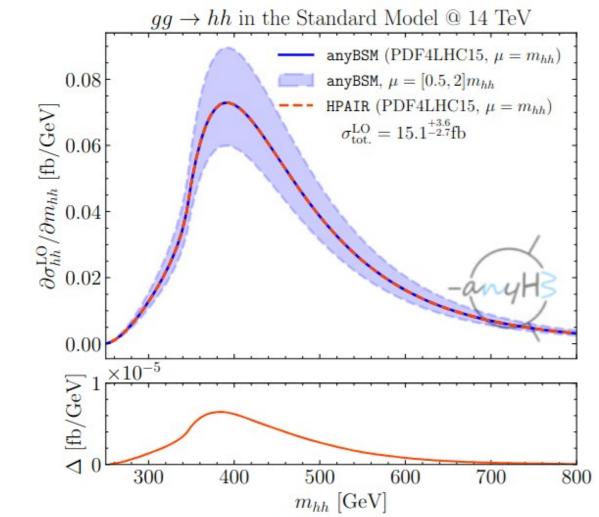

→ new modules anyLambdaijk and anyHH [Bahl, Braathen, Gabelmann.


[Bahl, Braathen, Gabelmann, Radchenko Serdula, GW *WIP*]

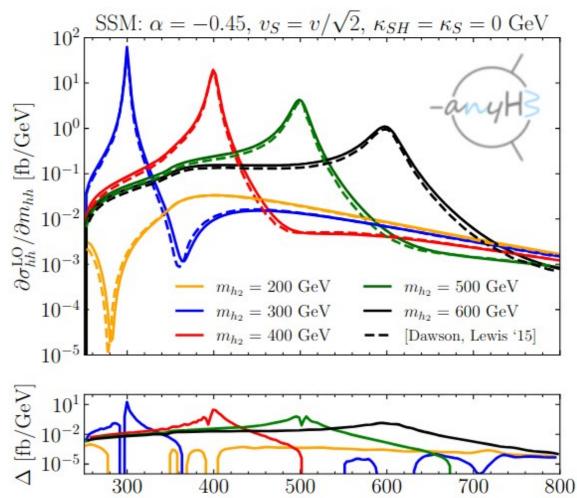



Ongoing developments: anyLamijk

[Bahl, JB, Gabelmann, Radchenko Serdula, Weiglein *WIP*]

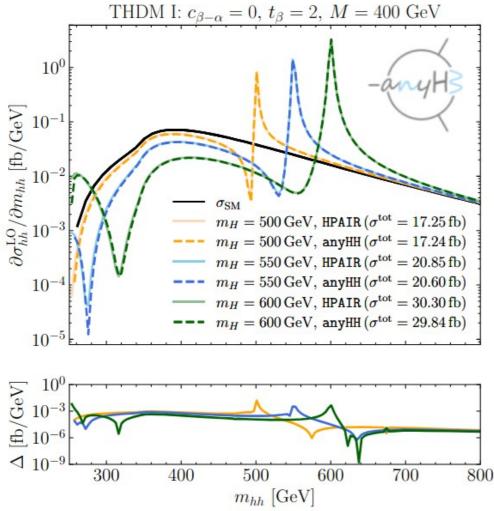

 \rightarrow excellent agreement with BSMPT results (in eff. pot. approx.), in view of dif. scheme for $\sqrt{E}\sqrt{\gamma}$

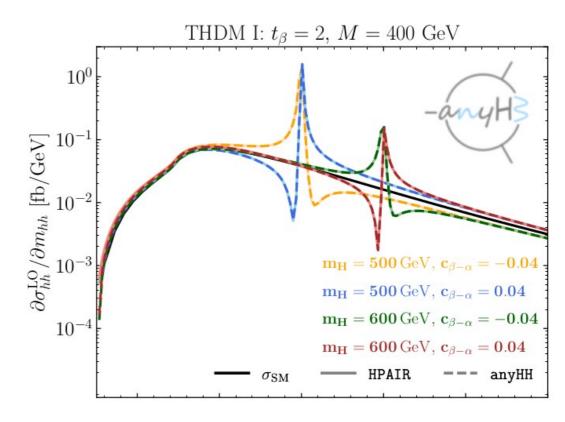
 \rightarrow full OS schemes for λ_{hhh} and λ_{hhH} couplings worked out in 2HDM [Bahl, JB, Gabelmann, Radchenko Serdula, Weiglein], RxSM [JB, Heinemeyer, Verduras Schaeidt], and more [Bosse, JB, Gabelmann, Hannig, Weiglein]!

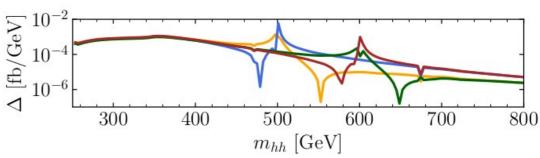

Page 55

Ongoing developments: tests of anyHH with leading order

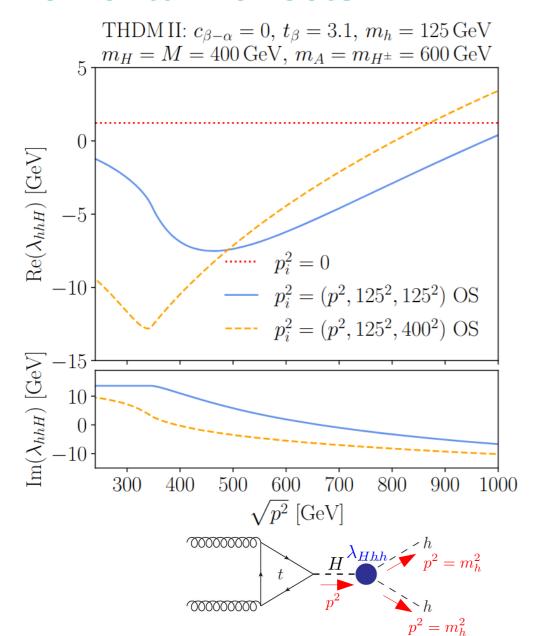
trilinear couplings $\Delta \equiv |\partial \sigma_{hh}^{\rm LO}/\partial m_{hh}({\rm HPAIR}) - \partial \sigma_{hh}^{\rm LO}/\partial m_{hh}({\rm any HH})|$

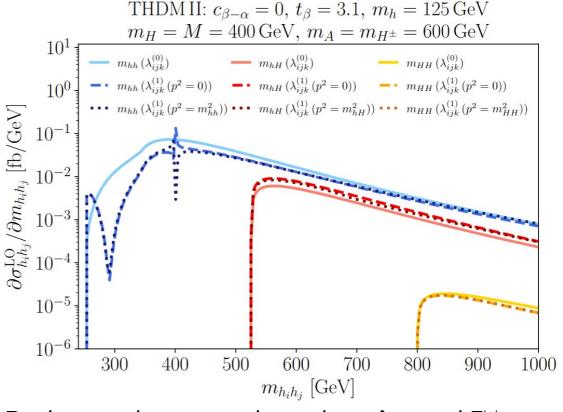

Excellent agreement with LO HPair result, once one ensures that running of α_s + choice of PDFs are same
 DESY. | Higgs Pairs 2024 | Johannes Braathen (DESY) | 15 May 2025


Very good agreement results of [Dawson, Lewis '15] for singlet extension of SM (remaining difference because PDF sets can't be taken to be the same) 56


 m_{hh} [GeV]

Ongoing developments: comparisons with HPAIR in the 2HDM


Very good agreement with HPair, using one-loop trilinear scalar couplings computed by anyH3/anyLambdaijk, for 2HDM benchmarks (here in alignment limit)

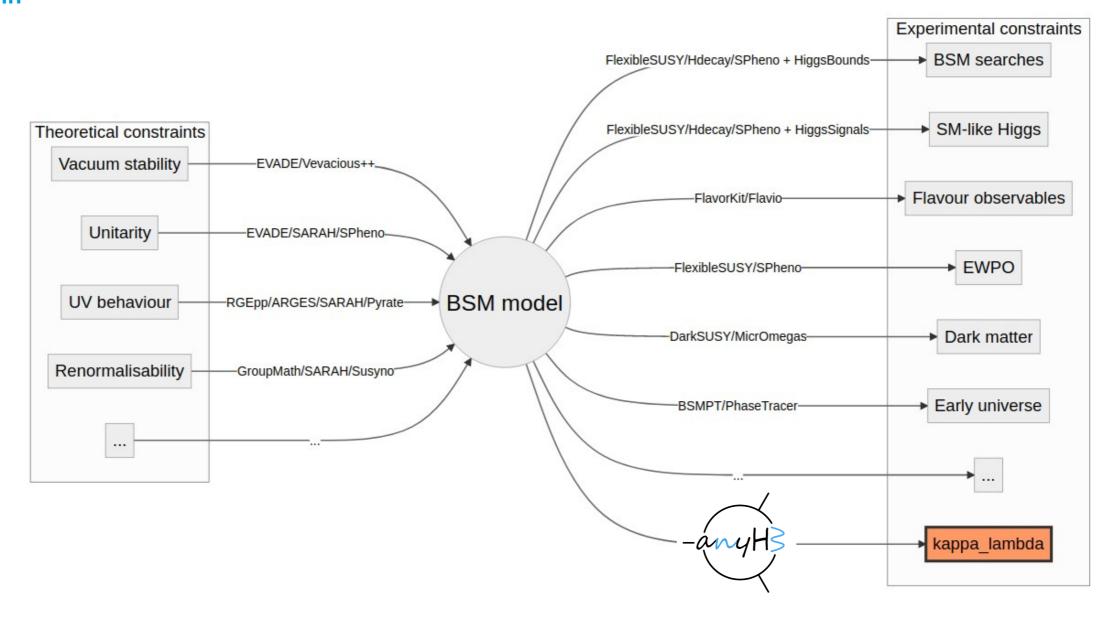


Momentum effects

[Bahl, JB, Gabelmann, Radchenko Serdula, Weiglein *WIP*]

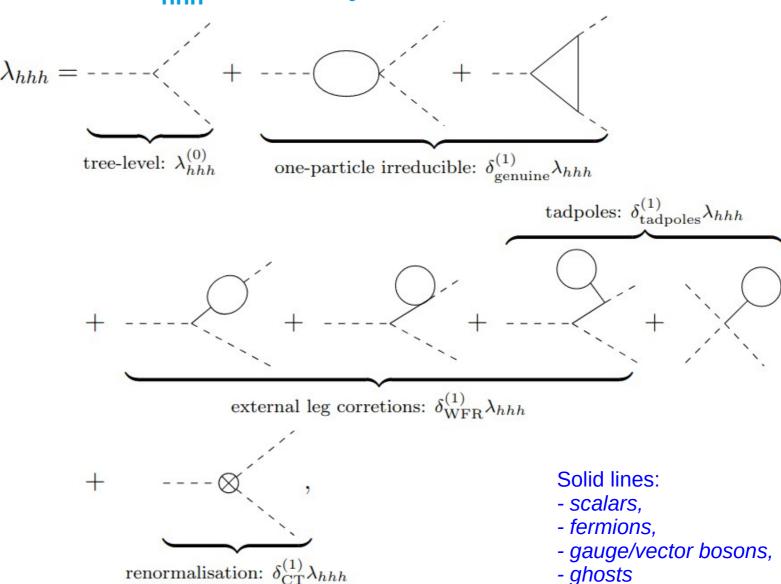
Peak around $m_{hh} = m_{H}$ depends on λ_{hhH} and $\Gamma^{tot.}_{H}$

• Here: alignment limit, so at tree level: $\lambda_{hhH}^{(0)}=0$


• However at loop level: $\lambda_{hhH}^{(1)}(0,0,0) \sim 1 \; {\rm GeV} > 0$ but $\lambda_{hhH}^{(1)}(m_{hh}^2,m_h^2,m_h^2) < 0$

Consequence: 'dip-peak' → 'peak-dip' structure

anyH3 (v1)


DESY. Page 59

λ_{hhh} within the landscape of automated tools

Full one-loop calculation of λ_{hhh} with anyH3: how does it work?

- Generic results applied to concrete (B)SM model, using inputs in UFO format [Degrande et al., '11], [Darmé et al. '23]
- Loop functions evaluated via COLLIER [Denner et al '16] interface, pyCollier
- Restrictions on particles and/or topologies possible
- Renormalisation performed automatically (more in backup)

Computing λ_{hhh} in general renormalisable theories: method

Our method: we derive and implement analytic results for generic diagrams, i.e. assuming generic

For evaluation:

- Apply to concrete (B)SM model, using inputs in UFO format [Degrande et al., '11], [Darmé et al. '23]
- Evaluate loop functions via COLLIER
 [Denner et al '16] interface,
 pyCollier
- All included in public tool anyH3
 [Bahl, JB, Gabelmann, Weiglein '23]

- > Couplings $C_i = C_i^L P_L + C_i^R P_R$, where $P_{L,R} \equiv \frac{1}{2}(1 \mp \gamma_5)$
- \rightarrow Masses on the internal lines m_{fi}, i=1,2,3
- External momenta p_i, i=1,2,3

$$=2\mathbf{B0}(p_{3}^{2},m_{2}^{2},m_{3}^{2})(C_{1}^{L}(C_{2}^{L}C_{3}^{R}m_{f_{1}}+C_{2}^{R}C_{3}^{R}m_{f_{2}}+C_{2}^{R}C_{3}^{L}m_{f_{3}})+C_{1}^{R}(C_{2}^{R}C_{3}^{L}m_{f_{1}}+C_{2}^{L}C_{3}^{R}m_{f_{1}}+C_{2}^{L}C_{3}^{R}m_{f_{3}})+m_{f_{1}}\mathbf{C0}(p_{2}^{2},p_{3}^{2},p_{1}^{2},m_{1}^{2},m_{3}^{2},m_{2}^{2})((C_{1}^{L}C_{2}^{L}C_{3}^{R}+C_{1}^{R}C_{2}^{R}C_{3}^{L})(p_{1}^{2}+p_{2}^{2}-p_{3}^{2})+2(C_{1}^{L}C_{2}^{L}C_{3}^{L}+C_{1}^{R}C_{2}^{R}C_{3}^{R})m_{f_{2}}m_{f_{3}}+\\ 2m_{f_{1}}(C_{1}^{L}(C_{2}^{L}C_{3}^{R}m_{f_{1}}+C_{2}^{R}C_{3}^{R}m_{f_{2}}+C_{2}^{R}C_{3}^{L}m_{f_{3}})+C_{1}^{R}(C_{2}^{R}C_{3}^{L}m_{f_{1}}+C_{2}^{L}C_{3}^{L}m_{f_{2}}+\\ C_{2}^{L}C_{3}^{R}m_{f_{3}})))+\mathbf{C1}(p_{2}^{2},p_{3}^{2},p_{1}^{2},m_{1}^{2},m_{3}^{2},m_{2}^{2})(2p_{2}^{2}(C_{1}^{L}C_{3}^{R}(C_{2}^{L}m_{f_{1}}+C_{2}^{R}m_{f_{2}})+\\ C_{1}^{R}C_{3}^{L}(C_{2}^{R}m_{f_{1}}+C_{2}^{L}m_{f_{2}}))+(p_{1}^{2}+p_{2}^{2}-p_{3}^{2})((C_{1}^{L}C_{2}^{L}C_{3}^{R}+C_{1}^{R}C_{2}^{R}C_{3}^{L})m_{f_{1}}+\\ (C_{1}^{L}C_{2}^{R}C_{3}^{L}+C_{1}^{R}C_{2}^{L}C_{3}^{R})m_{f_{3}}))+\mathbf{C2}(p_{2}^{2},p_{3}^{2},p_{1}^{2},m_{1}^{2},m_{3}^{2},m_{2}^{2})((p_{1}^{2}+p_{2}^{2}-p_{3}^{2})((C_{1}^{L}C_{2}^{L}C_{3}^{R}+C_{1}^{R}C_{2}^{L}C_{3}^{R})m_{f_{1}}+C_{2}^{R}m_{f_{2}})+C_{1}^{R}C_{2}^{R}C_{3}^{L})m_{f_{1}}+C_{2}^{R}C_{3}^{L})m_{f_{1}}+C_{2}^{R}C_{3}^{L})m_{f_{1}}+C_{2}^{R}C_{3}^{L})m_{f_{1}}+C_{2}^{R}C_{3}^{L}C_{3}^{R}+C_{1}^{R}C_{2}^{L}C_{3}^{R})m_{f_{3}}))$$

(B0, C0, C1, C2: loop functions)

Flexible choice of renormalisation schemes

$$\delta_{\rm CT}^{(1)} \lambda_{hhh} = - - - \otimes ($$

- > **1L calculation** \rightarrow renormalisation of all parameters entering λ_{hhh} at tree-level
- In general:

$$(\lambda_{hhh}^{(0)})^{\text{BSM}} = (\lambda_{hhh}^{(0)})^{\text{BSM}} (\underline{m_h \simeq 125 \text{ GeV}}, v \simeq 246 \text{ GeV}, \underline{m_{\Phi_i}}, \underline{\alpha_i}, \underline{v_i}, \underline{g_i}, \underline{g_i})$$
SM sector

BSM BSM indep.

Most automated codes: MS/DR only

masses mixing angles VEVs BSM coups.

- anyH3: much more flexibility, following user choice:
 - **SM sector** (m_h , v): fully OS or $\overline{MS}/\overline{DR}$
 - **BSM masses**: OS or $\overline{\text{MS}}/\overline{\text{DR}}$
 - Additional couplings/vevs/mixings: by default MS, but user-defined ren. conditions also possible!

$$\delta_{\mathrm{CT}}^{(1)} \lambda_{hhh} = \sum_{x} \left(\frac{\partial}{\partial x} (\lambda_{hhh}^{(0)})^{\mathrm{BSM}} \right) \delta^{\mathrm{CT}} x \,, \qquad \text{with } x \in \{m_h, v, m_{\Phi_i}, v_i, \alpha_i, g_i, \text{etc.}\}$$
Renormalised in $\overline{\mathrm{MS}}$, OS, in custom schemes, etc.

(Default) Renormalization choice of $(v^{SM})^{OS}$ and $(m_i^2)^{OS}$

>
$$v^{\text{OS}} \equiv \frac{2M_W^{\text{OS}}}{e} \sqrt{1 - \frac{M_W^{2\,\text{OS}}}{M_Z^{2\,\text{OS}}}}$$
 with
$$\cdot \delta^{(1)} M_V^{2\,\text{OS}} = \frac{\Pi_V^{(1),T}}{M_V^{2\,\text{OS}}} (p^2 = M_V^{2\,\text{OS}}), V = W, Z$$

$$\cdot \delta^{(1)} e^{\text{OS}} = \frac{1}{2} \dot{\Pi}_{\gamma} (p^2 = 0) + \text{sign} (\sin \theta_W) \frac{\sin \theta_W}{M_Z^2 \cos \theta_W} \Pi_{\gamma Z} (p^2 = 0)$$

- > attention (i): $\rho^{\text{tree-level}} \neq 1 \rightarrow \text{further CTs needed (depends on the model)}$ \rightarrow ability to define *custom* renormalisation conditions
- > scalar masses: $m_i^{OS} = m_i^{pole}$

$$\delta^{\text{OS}} m_i^2 = -\widetilde{\text{Re}} \Sigma_{h_i}^{(1)}|_{p^2 = m_i^2}$$

$$\delta^{\mathsf{OS}} Z_i = \widetilde{\mathsf{Re}} \tfrac{\partial}{\partial p^2} \Sigma_{h_i}^{(1)}|_{p^2 = m_i^2}$$

> attention (ii): scalar mixing may also require further CTs/tree-level relations

All bosonic one- & two-point functions and their derivatives for general QFTs are required for flexible OS renormalisation.

Features of anyH3, so far

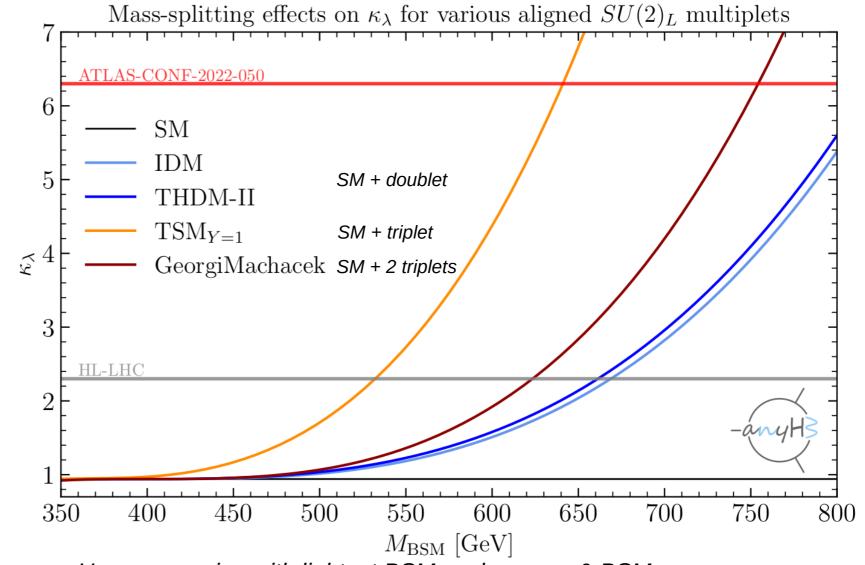
- Import/conversion of any UFO model
- Definition of renormalisation schemes

```
# schemes.yml
```

```
renormalization_schemes:
                                         (extract from
 MS:
                                         schemes.yml
                                         for 2HDM)
    SM names:
      Higgs-Boson: h1
    VEV counterterm: MS
    mass counterterms:
      h1: MS
      h2: MS
 05:
    SM names:
      Higgs-Boson: h1
    VEV counterterm: OS
    custom CT hhh: 'dbetaH =
f"({Sigma(''Hm1'',''Hm2'',momentum=''0'')} +
{Sigma(''Hm1'',''Hm2'',momentum=''MHm2**2'')})/-
(2*MHm2**2)"
      dTanBeta = f"({dbetaH})/cos(betaH)**2"
```

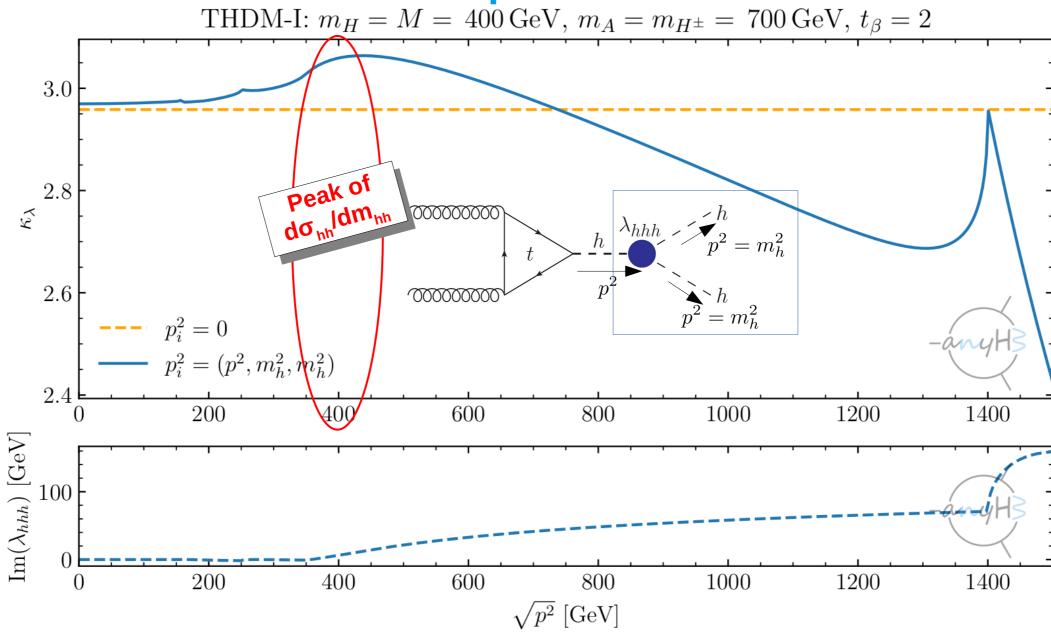
- Analytical / numerical / LaTeX outputs
- 3 user interfaces:
 - Python library

```
from anyBSM import anyH3
myfancymodel = anyH3('path/to/UFO/model')
result = myfancymodel.lambdahhh()
```


- Command line
- Mathematica interface
- Perturbative unitarity checks available (at tree level and in high-energy limit for now)
- Can be used together with a spectrum generator and handles SLHA format
- Efficient caching available
- Lots more!

New results I: mass-splitting effects in various BSM models

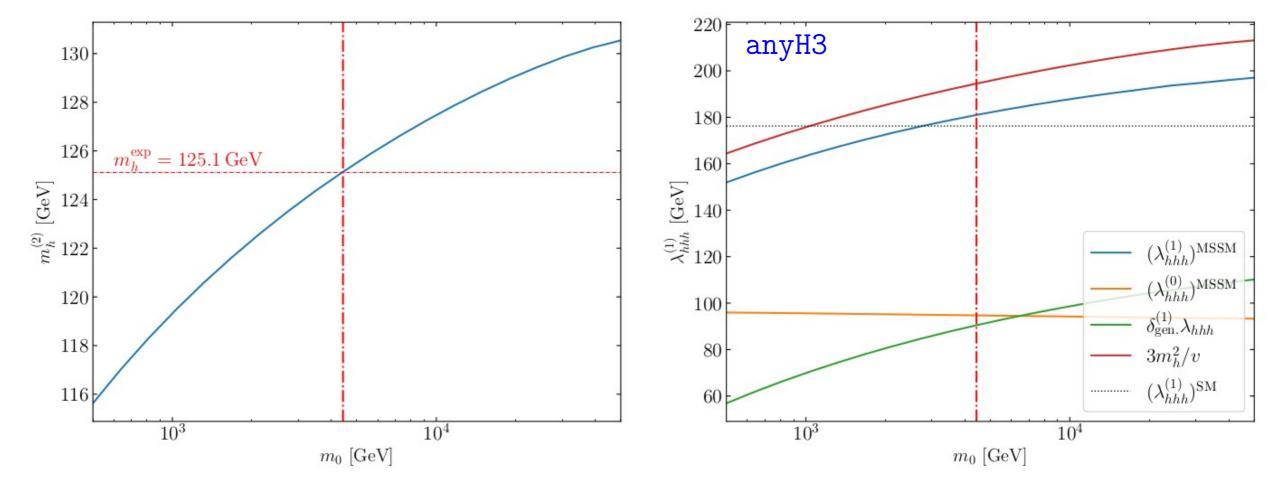
 Consider the non-decoupling limit in several BSM models


$$M_{\rm BSM}^2 = \mathcal{M}^2 + \tilde{\lambda}v^2$$

- > Increase M_{BSM} , keeping \mathcal{M} fixed
 - → large mass splittings
 - → large BSM effects!
- Perturbative unitarity
 checked with
 anyPerturbativeUnitarity
- Constraints on BSM parameter space!

Here: scenarios with lightest BSM scalar mass & BSM mass param. at 400 GeV; other BSM scalar masses = $M_{\rm RSM}$

New results II: momentum dependence in the 2HDM

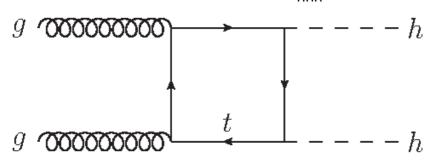

More new results with anyH3: an example in the N2HDM

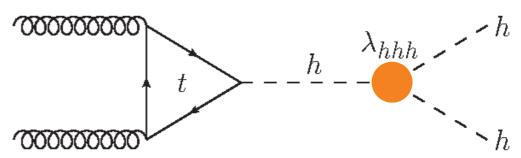
NTHDM: $m_{h_2}=125.1~{\rm GeV},\, m_{h_1}=m_{h_3}=m_A=m_{H^\pm}=300~{\rm GeV},\, \tilde{\mu}=100~{\rm GeV},\, t_\beta=2$ 0.50.5 κ_{λ} •• NTHDM 1L, $(\alpha_1 + \alpha_3 = \beta - \pi/2)$, $v_S = 300 \text{ GeV}$ ••• NTHDM 1L, $(\alpha_1 + \alpha_3 = \beta - \pi/2)$, $v_S = 3 \text{ TeV}$ NTHDM 0L, $(\alpha_1 + \alpha_3 = \beta - \pi/2)$, $v_S = 300 \text{ GeV}$ -0.5-0.5••• NTHDM 0L, $(\alpha_1 + \alpha_3 = \beta - \pi/2)$, $v_S = 3 \text{ TeV}$ THDM 1L, (alignment limit $\alpha = \beta - \pi/2$) THDM 0L, (alignment limit $\alpha = \beta - \pi/2$) $\pi/8$ $3\pi/8$ $\pi/2$ $\pi/4$ α_2

- \triangleright N2HDM = 2HDM + real singlet
- PCP-even sector: 3 states h_1 , h_2 , h_3 , with 3 mixing angles α_1 , α_2 , α_3
- Here $\alpha_2 \rightarrow \pi/2 \rightarrow \text{recover 2HDM}$ (itself in alignment limit)
 - We can study e.g. the relative sign of κ_{λ} and $\kappa_{t} \rightarrow$ affects double-Higgs production
 - $\triangleright \kappa_{t}$ too far away from 1 excluded

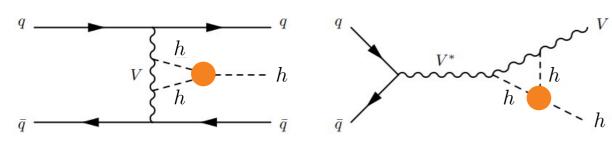
Full one-loop calculation of λ_{hhh} in the MSSM

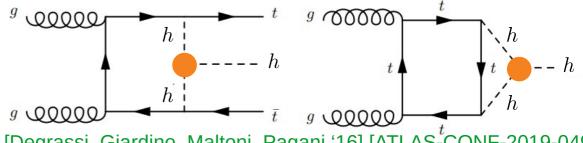
CMSSM, $m_0 = m_{1/2} = -A_0$, $\tan \beta = 10$, $\operatorname{sgn}(\mu) = 1$, with m_h computed at 2L in SPheno

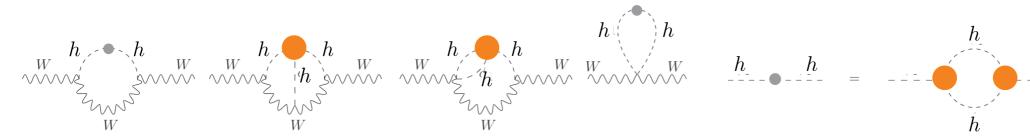

- > Example for a very simple version of the constrained MSSM \rightarrow BSM parameters m_0 , $m_{1/2}$, A_0 , $sgn(\mu)$, $tan\beta$
- For each point, M, computed at 2L with SPheno, and SLHA output of SPheno used as input of anyH3

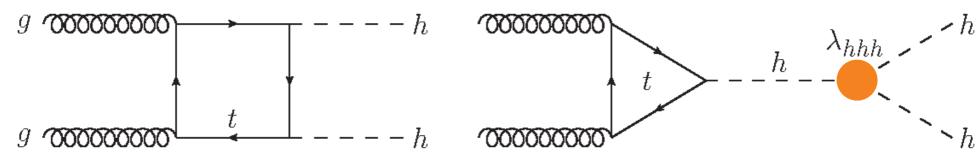

Trilinear Higgs self-coupling

DESY. Page 70


Experimental probes of λ_{hhh}

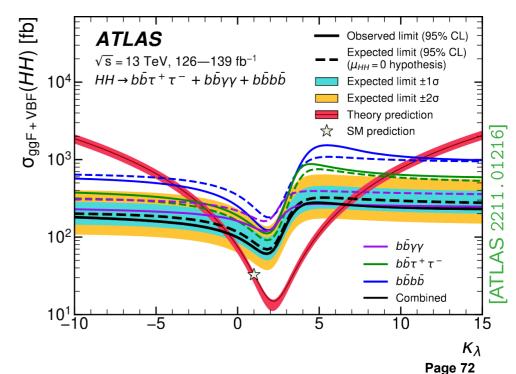

→ Double-Higgs production → λ_{hhh} enters at <u>leading order (LO)</u> → most direct probe!

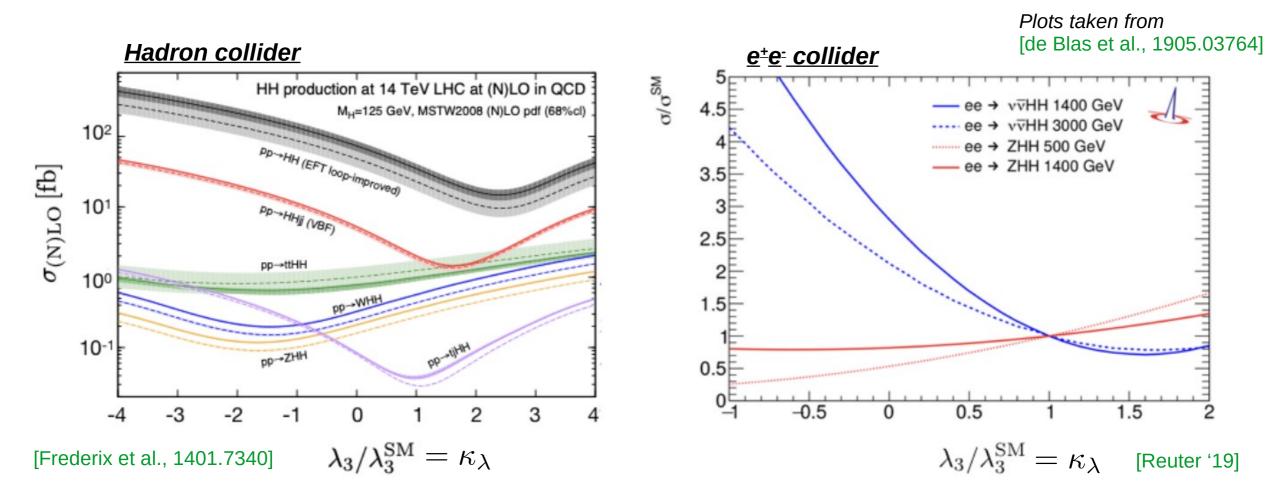

> Single-Higgs production $\rightarrow \lambda_{hhh}$ enters at NLO


[Degrassi, Giardino, Maltoni, Pagani '16] [ATLAS-CONF-2019-049]

> Electroweak Precision Observables (EWPOs) $\rightarrow \lambda_{hhh}$ enters at NNLO

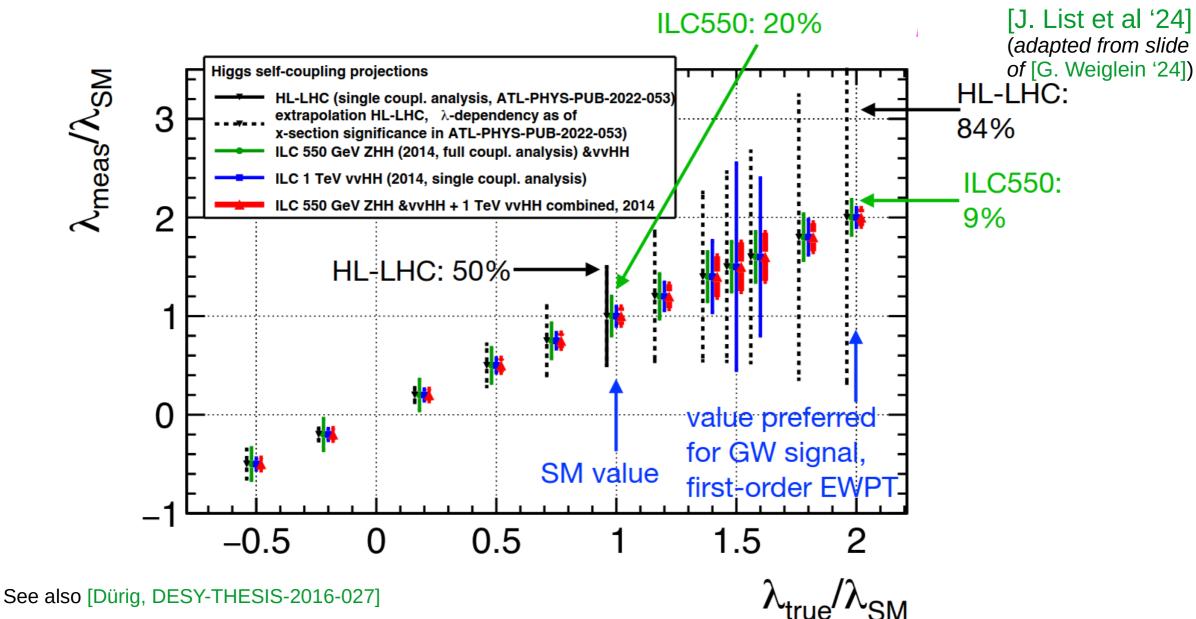
Accessing λ_{hhh} via di-Higgs production


→ Di-Higgs production $\rightarrow \lambda_{hhh}$ enters at leading order (LO) \rightarrow most direct probe of λ_{hhh}

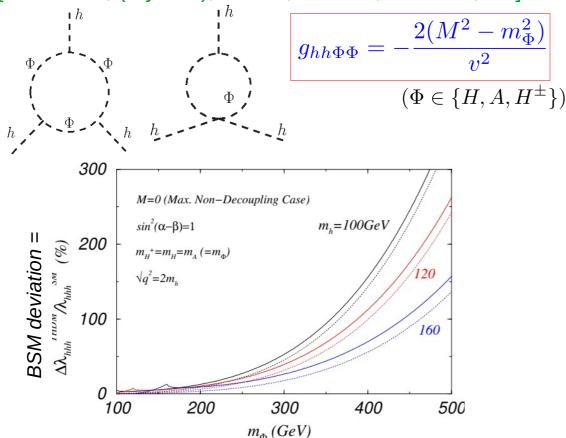

[Note: Single-Higgs production (EW precision observables) $\rightarrow \lambda_{nn}$ enters at NLO (NNLO)]

- Box and triangle diagrams interfere destructively
 - \rightarrow small di-Higgs cross-section σ_{hh} in SM
 - \rightarrow BSM deviation in λ_{hhh} can **significantly alter** di-Higgs production!
- Upper limit on di-Higgs cross-section
 - \rightarrow limits on $\kappa_{\lambda} \equiv \lambda_{hhh} / (\lambda_{hhh}^{(0)})^{SM}$

»
$$\kappa_{\!_{\lambda}}$$
 as an effective coupling: $\mathcal{L}\supset -\kappa_{\lambda} imes rac{3m_h^2}{v^2}\cdot h^3+\cdots$



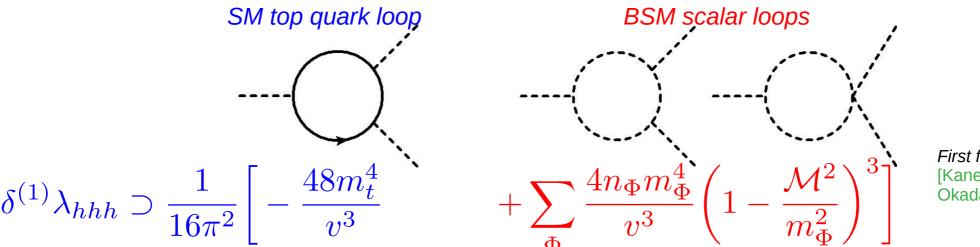
Di-Higgs production cross-sections as a function of λ_{hhh}


- > BSM deviation in κ_{λ} modifies the interference between different contributions to di-Higgs production
- Strong impact on total cross-sections (and also on differential distributions, see later slides)

Precision on the determination of λ_{hhh} as a function of λ_{hhh}


Mass splitting effects in λ_{hhh}

First investigation of 1L BSM contributions to λ_{hhh} in 2HDM: [Kanemura, (Kiyoura), Okada, Senaha, Yuan '02, '04]


- **Deviations of tens/hundreds of % from SM possible,** for large $g_{h\Phi\Phi}$ or $g_{hh\Phi\Phi}$ couplings
- Mass splitting effects, now found in various models (2HDM, inert doublet model, singlet extensions, etc.)

- Large effects confirmed at 2L in [JB, Kanemura '19]
- → leading 2L corrections involving BSM scalars (H,A,H±) and top quark, computed in effective potential approximation

One-loop mass-splitting effects

Leading one-loop corrections to λ_{hhh} in models with extended sectors (like 2HDM):

First found in 2HDM: [Kanemura, Kiyoura, Okada, Senaha, Yuan '02]

 \mathcal{M} : **BSM mass scale**, e.g. soft breaking scale M of Z₂ symmetry in 2HDM

 n_Φ : # of d.o.f of field Φ

> Size of new effects depends on how the BSM scalars acquire their mass: $m_\Phi^2 \sim {\cal M}^2 + \tilde{\lambda} v^2$

$$\left(1 - \frac{\mathcal{M}^2}{m_{\Phi}^2}\right)^3 \longrightarrow \begin{cases} 0, \text{ for } \mathcal{M}^2 \gg \tilde{\lambda} v^2 \\ 1, \text{ for } \mathcal{M}^2 \ll \tilde{\lambda} v^2 \end{cases} \longrightarrow \begin{cases} \text{Huge BSM} \\ \text{effects possible!} \end{cases}$$

Examples of scalar contributions to λ_{hhh} in aligned 2HDM $m_{\Phi}^{\Phi} \in \{H, A, H^{\pm}\}$ $m_{\Phi}^{2} = M^{2} + \tilde{\lambda}_{\Phi}v^{2}$

Coupling/Order	0L	1L	2L	3L
9 _{hhhh}		subleading (subleading	subleading
$\mathbf{g}_{(h)h\Phi\Phi}$ $\left[g_{hh\Phi\Phi} = -\frac{2(M^2 - m_{\Phi}^2)}{v^2}\right]$	-	$\left(\Phi\right)$	$\Phi = \frac{h}{h}$	$\left(\left h \right \right) \left(\left(\left h \right \right) \right)$
g _{(h)ΗΦΦ'} [g _{(h)GΦΦ'} case similar]	-	-	$\Phi = \frac{\widehat{H}}{\widehat{\Phi}}$	$-\frac{\widehat{H}}{\Phi}$
9 _{ΦΦΦ'Φ'} [2 BSM scalars of species Φ, 2 of species Φ']	-	-	$\left\langle \left\langle \Phi\right\rangle \left\langle \Phi\right\rangle \right\langle \left\langle \right\rangle$	$\left(\overbrace{\Phi}\right) \left(\overbrace{\Phi}\right) \left(\overbrace{\Phi}\right) \left(\overbrace{\bullet}\right)$

[NB: 1 h can be replaced by a VEV1 → no further type of coupling entering after 2L

→ for each class of diagrams, perturbative convergence can be checked!

Constraining BSM models with λ_{hhh}

i. Can we apply the limits on κ_{λ} , extracted from experimental searches for di-Higgs production, for BSM models?

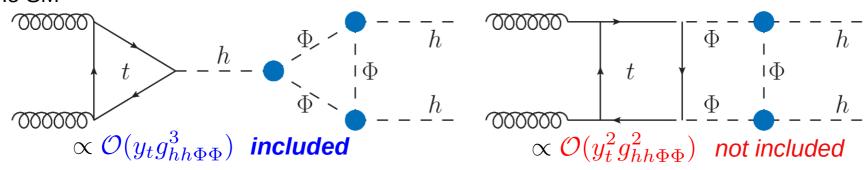
ii. Can large BSM deviations occur for points still allowed in light of theoretical and experimental constraints? If so, how large can they become?

As a concrete example, we consider an aligned 2HDM

Based on

arXiv:2202.03453 (Phys. Rev. Lett.) in collaboration with Henning Bahl and Georg Weiglein

DESY. Page 78


Can we apply di-Higgs results for the aligned 2HDM?

 \succ Current strongest limits on κ_{λ} from ATLAS di-Higgs searches

$$-1.2 < K_{\lambda} < 7.2$$
 [ATLAS-CONF-2024-006]

[where $\kappa_{\lambda} \equiv \lambda_{hhh} / (\lambda_{hhh}^{(0)})^{SM}$]

- What are the assumptions for the ATLAS limits?
 - All other Higgs couplings (to fermions, gauge bosons) are SM-like
 - → this is **ensured by the alignment** ✓
 - The modification of λ_{hhh} is the only source of deviation of the *non-resonant Higgs-pair production cross section* from the SM

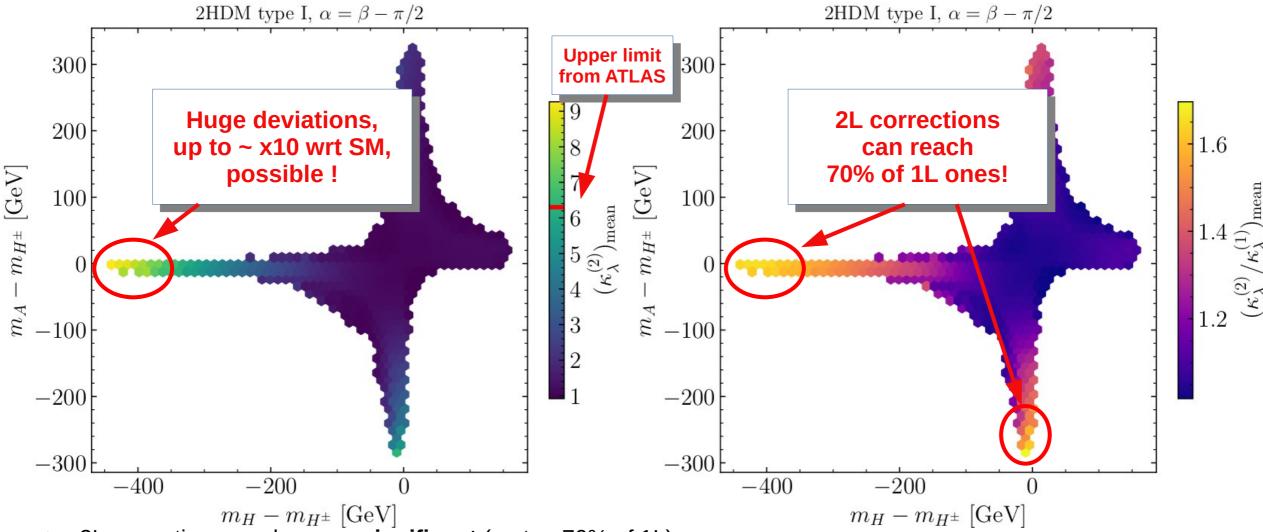
- \rightarrow We correctly include all leading BSM effects to di-Higgs production, in powers of $g_{hh\phi\phi}$, up to NNLO! \checkmark
- We can apply the ATLAS limits to our setting!

A parameter scan in the aligned 2HDM

[Bahl, JB, Weiglein PRL '22]

- Our strategy:
 - 1. **Scan BSM parameter space**, keeping only points passing various theoretical and experimental constraints (see below)
 - 2. Identify regions with large BSM deviations in λ_{hhh}
 - 3. Devise a **benchmark scenario** allowing large deviations and investigate impact of experimental limit on λ_{hhh}
- Here: we consider an aligned 2HDM of type-I, but similar results expected for other 2HDM types, or other BSM models with extended Higgs sectors
- Constraints in our parameter scan:
 - 125-GeV Higgs measurements with HiggsSignals
 - Direct searches for BSM scalars with HiggsBounds
 - b-physics constraints, using results from [Gfitter group 1803.01853]

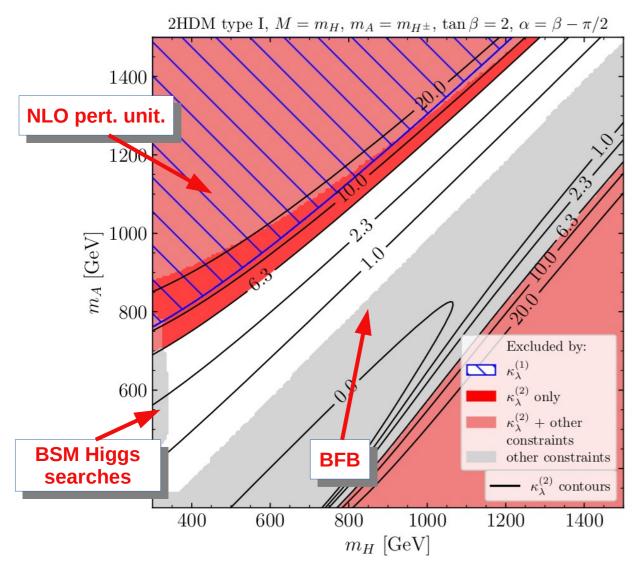
Checked with ScannerS
[Mühlleitner et al. 2007.02985]


- EW precision observables, computed at two loops with THDM_EWPOS [Hessenberger, Hollik '16, '22]
- Vacuum stability
- · Boundedness-from-below of the potential

Checked with ScannerS

- NLO perturbative unitarity, using results from [Grinstein et al. 1512.04567], [Cacchio et al. 1609.01290]
- For points passing these constraints, we compute κ_{λ} at 1L and 2L, using results from [JB, Kanemura '19]

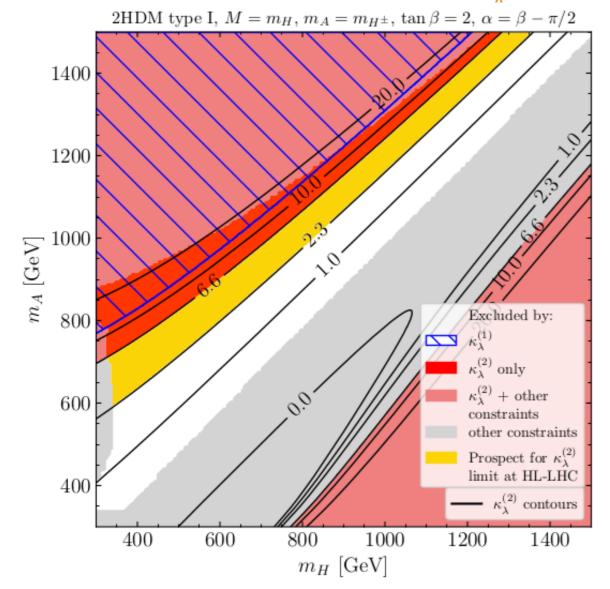
Parameter scan results


 $\underline{\text{Mean value}} \text{ for } \kappa_{\lambda}^{(2)} = (\lambda_{\text{hhh}}^{(2)})^{\text{2HDM}} / (\lambda_{\text{hhh}}^{(0)})^{\text{SM}} \text{ [left] and } \kappa_{\lambda}^{(2)} / \kappa_{\lambda}^{(1)} = (\lambda_{\text{hhh}}^{(2)})^{\text{2HDM}} / (\lambda_{\text{hhh}}^{(1)})^{\text{2HDM}} \text{ [right] in } (m_{\text{H}} - m_{\text{H}\pm}, m_{\text{A}} - m_{\text{H}\pm}) \text{ plane}$

- 2L corrections can become significant (up to ~70% of 1L)
- Huge enhancements (by a factor ~10) of λ_{hhh} possible for $m_A \sim m_{H\pm}$ and $m_H \sim M$

A benchmark scenario in the aligned 2HDM

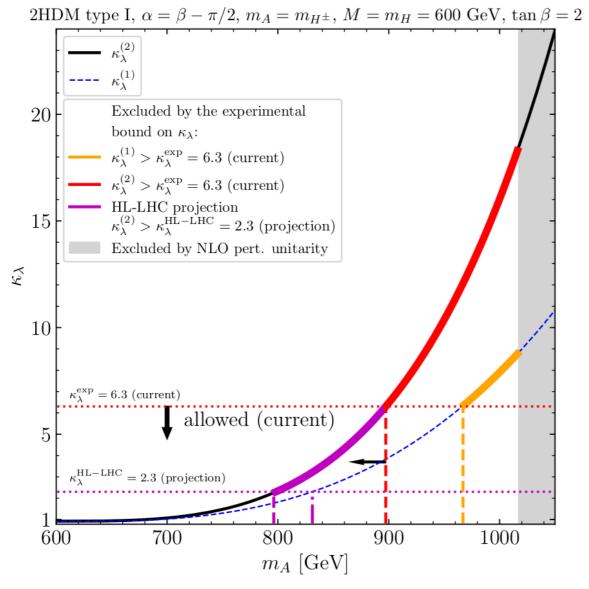
Results shown for aligned 2HDM of type-I, similar for other types (available in backup) We take $m_{A}=m_{H+}$, $M=m_{H+}$, $tan\beta=2$



- Grey area: area excluded by other constraints, in particular BSM Higgs searches, boundedness-from-below (BFB), perturbative unitarity
- Light red area: area excluded both by other constraints (BFB, perturbative unitarity) and by $\kappa_{\lambda}^{(2)} > 6.3$ [in region where $\kappa_{\lambda}^{(2)} < -0.4$ the calculation isn't reliable]
- Dark red area: new area that is excluded ONLY by $\kappa_{\lambda}^{(2)} > 6.3$. Would otherwise not be excluded!
- P Blue hatches: area excluded by $κ_λ^{(1)} > 6.3$ → impact of including 2L corrections is significant!

A benchmark scenario in the aligned 2HDM – future prospects

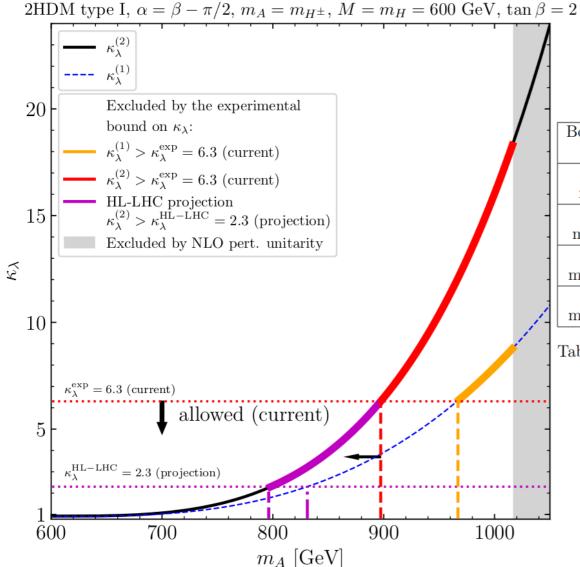
Suppose for instance the upper bound on κ_{λ} becomes $\kappa_{\lambda} < 2.3$


[Bahl, JB, Weiglein '23]

- Fig. 6. Golden area: additional exclusion if the limit on κ_{λ} becomes $\kappa_{\lambda}^{(2)} < 2.3$ (achievable at HL-LHC)
- Of course, prospects even better with an e+ecollider!
- Experimental constraints, such as Higgs physics, may also become more stringent, however **not** theoretical constraints (like BFB or perturbative unitarity)

A benchmark scenario in the aligned 2HDM - 1D scan

Within the previously shown plane, we fix $M=m_{H}=600$ GeV, and vary $m_{A}=m_{H\pm}$



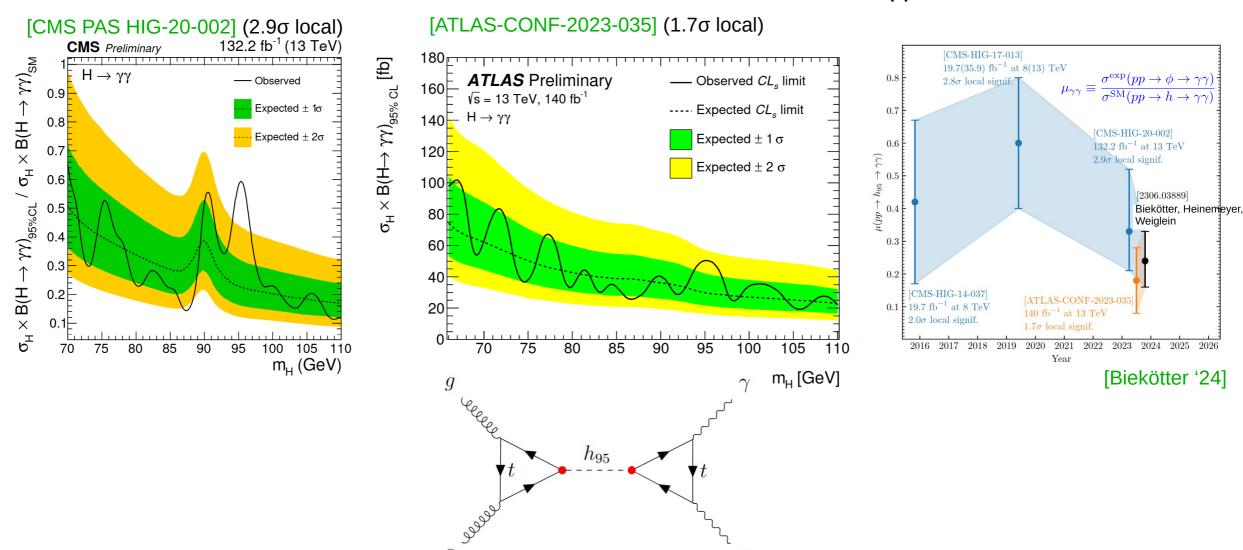
[Bahl, JB, Weiglein PRL '22]

- Illustrates the significantly improved reach of the experimental limit when including **2L corrections** in calculation of κ_{λ}
- A stricter choice for the perturbative unitarity constraint (grey) does not significantly change the region excluded by $\kappa_{\lambda}^{(2)}$

A benchmark scenario in the aligned 2HDM – 1D scan

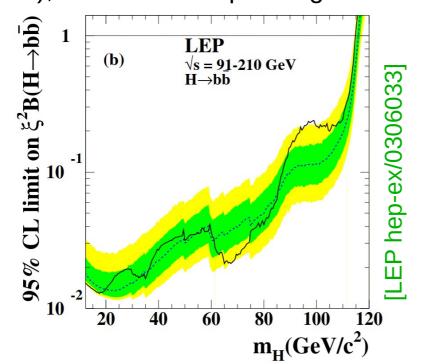
[Bahl, JB, Weiglein PRL '22]

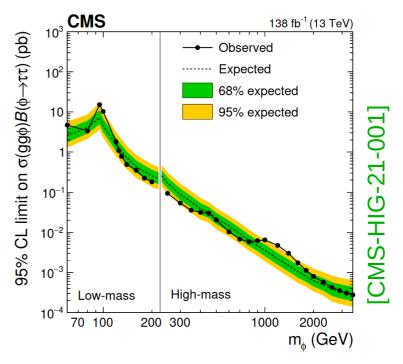
Bound on eigenvalues	$\max(m_A)$ with	$\max(m_A)$ with	$\max(m_A)$ with
	LO pert. unit.	NLO pert. unit.	with finite $\sqrt{s} \in [3 \text{ TeV}, 10 \text{ TeV}]$
$\max(a_i) < 1$	1161 GeV	$1017 \; \mathrm{GeV}$	_
$\max(\mathfrak{Re}(a_i)) < 1$	1161 GeV	1033 GeV	1260 GeV
$\max(a_i) < 0.5$	917 GeV	937 GeV	_
$\max(\mathfrak{Re}(a_i)) < 0.5$	917 GeV	958 GeV	929 GeV
$\max(a_i) < 0.49$	911 GeV	933 GeV	_
$\max(\mathfrak{Re}(a_i)) < 0.49$	911 GeV	956 GeV	922 GeV
$\max(a_i) < 0.45$	889 GeV	912 GeV	_
$\max(\mathfrak{Re}(a_i)) < 0.45$	889 GeV	948 GeV	897 GeV


Table 1: Maximal values of m_A allowed in the benchmark scenario under the constraint of perturbative unitarity, at LO and NLO, and for different upper bounds on the $2 \to 2$ scattering eigenvalues used in the perturbative unitarity constraint. Note that tree-level scattering eigenvalues are all real, so there is no difference between using max or $\Re \mathfrak{e}(\max)$ for the left column.

LHC excesses

DESY. Page 86

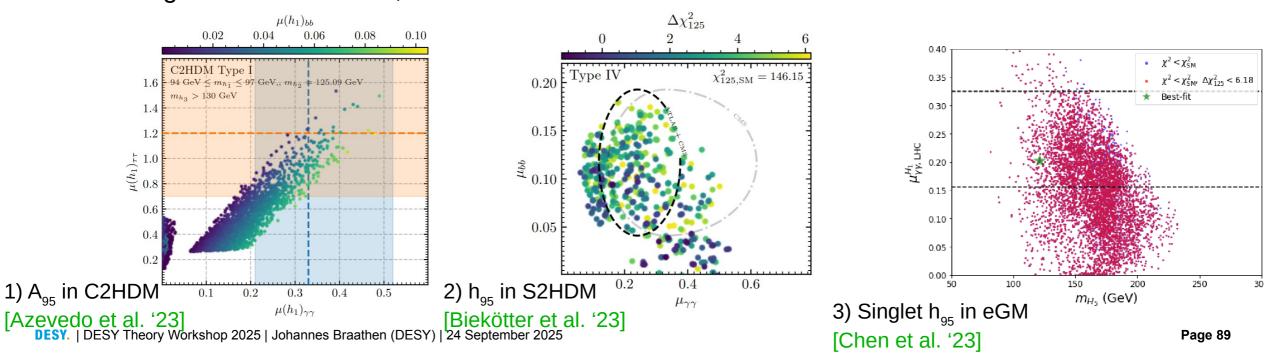

A Higgs boson at 95 GeV?


 $^{\triangleright}$ Excesses at 95 GeV in ATLAS and CMS low mass searches for $\Phi \rightarrow \gamma \gamma$

A Higgs boson at 95 GeV?

- > Excesses at 95 GeV in ATLAS and CMS low mass searches for $\Phi \rightarrow \gamma \gamma$
- Could correspond to LEP data in $\Phi \rightarrow b\overline{b}$ (but debated, see [Janot '24])
- CMS also found a broad excess (run 2) in $\Phi \to \tau + \tau$ -, around 95-100 GeV $\tilde{\tau}$ $\tilde{\tau$

 \times B(H $\rightarrow \gamma \gamma)_{Sl}$

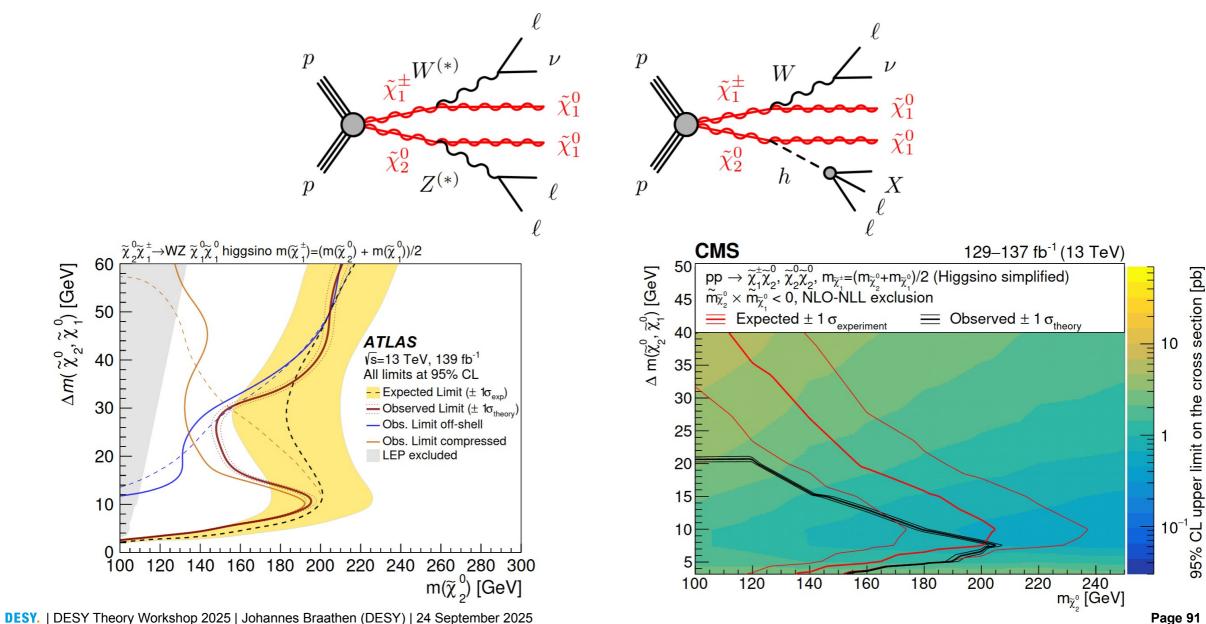

 $ightarrow \gamma \gamma
angle_{
m gr_c}$

132.2 fb⁻¹ (13 TeV)

Expected ± 2σ

A Higgs boson at 95 GeV? – a few possible interpretations

- Main classes of models accommodating h₉₅:
 - 1) h₉₅ belongs to an SU(2), multiplet, e.g. 2HDM variants, Y=0 triplet, etc.
 - 2) h_{95} comes from a singlet field mixing with h_{125} e.g. N2HDM, S2HDM, NMSSM, $\mu\nu$ SSM, etc.
 - 3) h_{95} is singlet-like, but $\mu(h_{95} \rightarrow \gamma \gamma)$ is explained by additional charged states, e.g. extended Georgi-Machacek model, etc.


A Higgs boson at 95 GeV? – a few possible interpretations

- Main classes of models accommodating h₉₅:
 - 1) h₉₅ belongs to an SU(2), multiplet, e.g. 2HDM variants, Y=0 triplet, etc.
 - 2) h_{95} comes from a singlet field mixing with h_{125} e.g. N2HDM, S2HDM, NMSSM, $\mu\nu$ SSM, etc.
 - 3) h_{95} is singlet-like, but $\mu(h_{95} \rightarrow \gamma \gamma)$ is explained by additional charged states, e.g. extended Georgi-Machacek model, etc.

What next?

- \rightarrow wait for ATLAS $\Phi \rightarrow \tau^+\tau^-$ run 2 results, and ATLAS and CMS run 3 results
- \rightarrow look for additional states (e.g. H[±], H^{±±}, ...) of models explaining h₉₅ directly, via effects on properties of h₁₂₅ (like h₁₂₅ \rightarrow $\gamma\gamma$), or via mixing effects

Excesses in soft-lepton and monojet searches

